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SECTION 1

INTRODUCTION

When studying the deformation of metallic solids due to applied

external loads, it is common to assume the material will behave in an

isotropic manner [1 ]. Typically, this assumption is extended to both

the elastic and elastic-plastic response [2]. In many cases, the

particular manufacturing process, such as rolling, introduces

anisotropy into the material, giving directionally sensitive elasto-

plastic mechanical behavior [3 ].

There are two categories of problems involving anisotropic

behavior. One is the induction of anisotropy into an initially

isotropic bulk material [4 ], most commonly observed during metal

forming operations. The second category involves those materials

which are initially anisotropic. An example is the behavior of some

metal-matrix composites. Both categories of problems are pertinent

to this research and a finite element program ANPLAST is developed to

this end. This program implements a properly formulated anisotropic

plasticity theory in a convenient form to use for numerical purposes.

The anisotropic elastoplasticity of sheet materials is often

studied from two perspectives. The first takes into consideration the

transverse or through-thickness anisotropy while assuming planar

isotropy. Most of the research to date has concentrated on this

subject [3,5] because this is the usual case incurred in rolling.

While the problem of planar anisotropy has been investigated from a

1



theoretical perspective [4,6,7], very few examples of its applications

can be found in the literature. Consequently, this research will

concentrate exclusively on planar anisotropy and its influence on

some practical problems of interest.

Specifically, a thin sheet with a circular hole and a panel with

a crack will be studied. The differences between the isotropic and

anisotropic solutions are elaborated. The elastoplastic analysis is

extended to layered (or laminated) structures with a particular

application to the sheet with a circular hole. The present numerical

solutions of these problems are confirmed by comparison with experimen-

tal results. Some comparisons are also made with the available

theoretical solutions.
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SECTION 2 FUNDAMENTALS OF ORTHOTROPIC PLASTICITY

INTRODUCTION

This section will review the fundamentals of elasticity of

orthotropic materials. A similar approach will then be used to derive

the orthotropic plasticity flow rule. The meaning of the coefficients

that appear in the theory will be demonstrated for uniaxial response

of the material. A discussion of the path dependency associated with

plastic flow necessarily entails a comparison of incremental

deformation theories of plasticit. and this is also covered in this

section. In anticipation of the later applications to laminated

composites, formulation of the elastoplastic response of a multilayered

laminate is included.

BASICS OF ELASTICITY

For an elastic body, the current stress state depends only on the

current deformation state. This can be expressed as [ 1 ]

= aw (2.1)
eij aoij

where

Gij = stress tensor

ekt z strain tensor

W z energy density function

3



For linear elasticity, W is assumed quadratic in the stress as

W = Cijk. 'ij 'ki (2.2)

Equation 2.1 then becomes

eij = CijkL 'kt

The tensor of elastic constants CijkL is independent of stress and

strain and exhibits the following symmetric behavior

CijkL * Cjikt: CijkL C ijLk: CijkL r Ck~ij

The matrix [CtjkL] has a maximum of 21 independent constants,

which can be written in contracted notation as

- C11  C12  C13 . . . . . . C16  il

C2 2  G22

e33  "33

23 Symmetric 023

e13 013

C6 6  012

If the material has three mutually perpendicular planes of symmetry,

it is considered orthotropic and the stress-strain relation reduces to

4



having 9 independent constants as,

e -Cll C12  C13  0 0 0 O11

e22 C12  C22  C2 3  0 0 0 022

e3 C1 3  C23  C3 3  0 0 0 033

e23  0 0 0 C4 4  0 0 023

e0 0 0 0 C5 5  0 '13

S0 0 0 0 0 C6 6  0;12

When analyzing thin sheets of material, the through-thickness

stress can be neglected as well as the corresponding shear stresses,

resulting in a state of plane stress. The constitutive equation now

becomes

e 11C1 1 i
e2 C 12 C122  0 "2 (2.3)

2el2 0 66 _ (12

A total of 4 independent constants describe the planar problem.

The through thickness strain e 33 could be obtained from knowledge of

C1 3 and C2 3. The coefficients in Eq. 2.3 can be represented in the

more common engineering form as

1 "v 1 2Cui12 C12 C2 1  E
1I 2

C22 = C66  112

2 12



where

E1 , E2  a elastic modulli

v1 2  z Poisson ratio

G 12 =shear modulus

and subscripts 1, 2 denote the corresponding principal material directions.

Since the material coefficients are constants, the incremental

constitutive relation for the plane orthotropic case simply becomes

de 11  doy1

d~e 22} (c] dG2(2.4)

de 12  d12

where [c] has the same meaning as Eq. 2.3.

The incremental load deformation response of an elastic material

is completely defined by Eq. 2.4.

PLASTICITY FORMULATION

The approach taken to the plasticity formulation is to use a flow

rule that is quadratic in the stresses. This gives sufficient

flexibility to describe orthotropic plasticity L 2 J.

Three Dimensional Anisotropic Flow Rule

The incremental plastic strains can be written in terms of a

plastic potential [8 ] as

I i i II I6



de? = 'g dx* (2.5)•ij

where the superscript Vp" denotes plasticity. For an anisotropic body,

Kachanov [8 ] suggested that g take the quadratic form

g = Cijk. 'ij 'ki (2.6)

It is interesting to note that a number of authors [9,10,11 ] have

investigated non-quadratic potential functions, but a quadratic

function is deemed sufficient for the purposes of this research.

Taking advantage of the symmetric properties of C? Eq. 2.5 is

contracted and rewritten (as in the elastic case) as

-- P _ P

de11  C11  C12  C13 .... C16  a11

de22  C2 2  a22

de 33  ' 033 dx*

de23 Symmetric 023

de 13  a13

de12  C66  012

The matrix [C ij]P contains 21 independent coefficients. If the

material contains three mutually perpendicular planes of symmetry,

then the plastic coefficient matrix takes the form

7



C 11 C 12 C 13 0 0 0

C 12 C 22 C 23 0 0 0

13 C 23 C 33 0 0 0

[Cip 0 0 0 C44 0 0

0 0 0 0 C 55 0

0 0 0 0 0 C 66

Thus, to describe three dimensional orthotropic plastic flow requires

only nine independent coefficients.

Reduction to Two Dimensional Plane Stress

When dealing with plane stress, the plastic flow relations

simplify further since 033 a 0, 013 ' 01 023 = 01 giving

p p
de C 11 C12 0

de221 C12 C22 0 c22 dx* (2.7)

de 0 0 C
12 66 c'12

L

The above system of equations are over-specified with four C-values and

dx*. Normalize these equations by introducing the following

definitions

r CP /Cp
11 11 22

r CP /Cp dA CP dx*66 66 22 22

r CP /Cp
12 12 22



Then, the incremental expressions for plane stress become

p
de 11 r 11 r 12 0 I'll

d de22 
r 12 1 0 G22 dA 

(2.8)

de 12 0 0 r 66J "12
I 

Cy 11

It is clear from this equation that the incremental plastic strains are

orthotropic with respect to the stresses, i.e., the normal components

of incremental strain are uncoupled from the shear stress. This

relation reduces to isotropic plastic flow when the r's have the

values [ 12 ]

r 11 = 1.0 r 12 50 r 66 `ý 1.50

The factor of proportionality dA is solved from work considerations.

Parenthetically, the plane stress orthotropic flow rule could have been

derived directly by taking the potential function 9 as

9 = 1 [r 2 + G2 + 2r 2 + 2r-f 111111 22 66012 12011G22J

Definition of Effectiye Stress and Strain

In general, the plastic work increment can be written as

dWP = (;ijdej

9



which for plane stress expands to

dWp o1 1 de 1 + a 22 de 2 + 2o2de2

The plastic strain increments previously defined in Eq. 2.8 can be ""

substituted into the above relation resulting in

dWp ={rlO2  
+2 + 2 + 2r 1 2oiio 2 2 } dA a 2gdx (2.9)

Let the effective stress and strain be defined such that

Sdep = dWp = 2gdx (2.10)

Further, the effective stress can be defined as

""rl; - l 2 2 + 2r 66 12 + 2r 12oII°2 2 a 2g (2.11)

Therefore,

dX I (diP/;) - f (diP/d;)(d;/;) (2.12)

and the effective plastic strain can be written as [12]

22 2 2
. 2+ p2

[dP]2 de1 + r de22- 2r deP de211 11 22 12 11 22
2(rll r2) 22

+ r- ) dep2 /r 6 6]/[r 1 1 - r 2  (2.13)

10



Substituting the above expression for dx into Eq. 2.8, the plane stress

orthotropic plastic flow equations become

de11  r11  r 12  0

d22  = 12  1"22 2

No assumption of constant volume deformation or incompressibility

was made during the development of these plastic flow equations. To

consider volumetric changes or thickness changes in the 2-D case

would require additional coefficients.

Layered Elastoplastic Materials

A laminate is defined as two or more laminas bonded together to

act as an integral structural element. Let the laminate consist of

thin layers, each exhibiting plane stress behavior. Due to the

potential for plastic flow in each layer, all stress-strain relations

will be written in incremental form. The elastic and plastic incremen-

tal constitutive relations can be written in matrix form as

{do}k = [Q&] {dee}k

{do}k = [Q]P {deP}k (2.15)

where [Q]e and [Q]P are the transformed inverse of matrices of Eqns.

2.4 and 2.14, respectively for the kth layer of a multilayered laminate.

11



The total stress-strain relation is obtained by adding the elastic

and plastic responses to give

{da}k = [Q]k {dek} (2.16)

where

[ [&]= + [&]p

It should be noted that [Q] will be stress dependent when plastic

deformation occurs through the contribution of [Q]P.

Knowledge of the variation of stress and strain through the

laminate thickness is essential to the extensional stiffness of a

laminate. For the purposes of this research, bending stiffness and

deformation will be ignored and only the first order extensional

behavior considered. The laminate is assumed to consist of perfectly

bonded laminas with displacements continuous across the lamina

boundaries so that no lamina can slip relative to another. These are

the usual type of assumptions made in laminate theory [13].

A typical laminate is pictured in Fig. 2.1 along with its deformed

shape. It is quite clear that the deformation and strain in the plane

of each layer is the same. The incremental stress-strain relations

for each lamina can be expressed as

{dolk - k {deo} (2.17)

12
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where {de o is the laminate strain increment.

The resultant laminate forces per unit width are obtained by

integrating the stress components of each lamina through the total

thickness of the laminate. They will take the following form
S.

dNx doxy•
t/ 2

AN = do y dz
-t/ 2

dN do~xy x

Since the stresses are constant through the thickness of each lamina,

then this becomes

dN dayl

I N
dNky I (Zk-Zk1)

dNxy, doxy)

Replacing the incremental lamina stresses with those from Eq. 2.17,

results in the incremental laminate load-deformation equations taking

the form

AN deo~Nx exdN = N'~ dyy

dNy I&Ik (zk-zk1) de0  (2.18)

do0ANxy1 xy

14



The global response of the laminate will be affected by each

layers stiffness contribution [Q]k" During elastoplastic deformation,

"each layer accounts for its particular plastic stiffness through [Q&].

ORTHOTROPIC BEHAVIOR UNDER UNIAXIAL STRESS

The effect of the plasticity coefficients appearing in the

previous "onstitutive relations can best be understood by analyzing a

uniaxial stress state.

Interpretation of the Plasticity Coefficients

For a uniaxial specimen cut from an orthotropic material at an

arbitrary direction to the principle axes as illustrated in Fig. 2.2, the

state of stress with respect to the material directions are as

follows

o11 =eCos2e

022 a aesin2e

012 = Gesinecose

The incremental strains in the loading direction and in the transverse

direction are

depL = [rCos4 e + 2r 2 cos 2esin2 e + sin4e + 2r sin2ecos 2 e] dX

de T [rl + 1-2r 6 6 ) sin 2 ecos 2 e + r 12 (sin 4e + cos 4 e] dX

(2.19)

15
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Figure 2.2 Illustration of a uniaxial specimen cut at
an arbitrary angle to the principal material
directions.
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The ratio of transverse to longitudinal strain increments can be

viewed as a plastic Poisson ratio and is written

_VP Z dePOT (r 11 + 1-2r 66 )sin 2 ecos 2 e + r 12( sin 
4 6 + Cos 4 e)

dep r Cos 4 e + sin 4 6 + 2(r + r n 2 ecos 2 6
6 L 11 12 66)s'

(2.20)

Note that for various orientations the sine and cosine terms are zero,

and the above expression simplifies, i.e.

e - 00 -Vpo X r 12 /r 11
0

6 - 900 -Vp oz r 12 (2.21)
90

6 a 450 -v p r 12- 2r 66 + 2r 12 + 
1

45 0 r 11 + 2r 66 + 2r 12 + I

Thus, it seems that the plasticity coefficients behave similarly to

Poisson ratio's. If the isotropic values of the r's are substituted

1
into the above equation, the plastic Poisson ratio is , for all

orientations. Otherwise, if the plasticity coefficients are varied

from their isotropic values, anisotropy will be induced into the

plastic flow.

Parametric Study of the Plasticity Coefficients

Additional insight can be obtained by conducting a simple

parametric study of the three plasticity coefficients. The axial and

transverse loading-deformation behavior of an arbitrarily oriented

uniaxial specimen will be studied. The elastic behavior of the

17



material will be assumed to be isotropic so that the anisotropy of the

plastic flow can be highlighted.

A FORTRAN computer program MULTIAX was developed for the purpose

of predicting the load-deformation behavior of an ideal element under

multiaxial loading. This program calculates the incremental strains
'a

during each load increment and sums them to obtain the total strain.

The program can handle any loading path.

The plasticity parameter r11 is studied first. Figure 2.3

illustrates the load-deformation behavior with assumed isotropic

properties. As expected, the global stress-strain response is not a

function of e. The isotropic example will be used as the base response

for comparison. Changing the value of r11 to .8 and then .4 as shown

in Fig. 2.4, highlights the global stress-strain dependence on e. It

is quite evident that the more r11 deviates from unity, the stronger

the induced anisotropy. It is obvious that yield does not occur at a

common value for all orientations. This is because the yield is a

function of the r's.

Figure 2.5 depicts the uniaxial load-deformation as r 12 is changed

from its isotropic value of -0.5. Figure 2.6 shows the effect as r 6 6

is changed from its isotropic value of 2.5. The departure of either

of these plasticity coefficients from their isotropic value also

induces anisotropy into the uniaxial yield.

These studies show that each parameter can affect the anisotropy

of material behavior.

Interelation of Work-hardening and the Plasticity Coefficients

Plasticity coefficients play an important role in determining

the unique relationship between effective stress (;) and the effective

18
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Figure 2.6 Uniaxial elastoplastic response of a material
in which the plasticity coefficient r 6 6 is
varied.
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plastic strain (•P). These coefficients allow the stress-strain curves

obtained at different angles to be collapsed into a single master curve.

With this in mind, the work-hardening relationship for any arbitrary

orientation of a uniaxial specimen can be written as

.4

=h(p) (2.22)

where

S= fea6

V e

fe = Cos 4e + sin4 e + 2r 6 6 sin 2 ecos 28 + 2r 2sin 2ecos 2e

For a material with a given anisotropy (e.g. particular r's), the

workhardening is specified by the function h(eP). This function is

usually expressed in the form of a power law. An example of such a

hardening law is a three parameter model used by Kenaga [12] to

represent a Boron-Aluminum metal-matrix composite. It appears as

=p L C-0J (2.23)
L4

where ay, =, and a are curve fitting parameters.

In the work to follow, the r's are constants; so the function

h(eP) is the only means by which the work hardening can be changed.
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It is interesting to note in Figs. 2.3-2.6 that all parametric cases

utilize an identical work-hardening function, yet the individual

uniaxial elastic-plastic slopes are different.

YIELD CRITERION UNDER MULTIAXIAL LOADING

For the case of an ideally isotropic material under a uniaxial

stress state, a single value of yield will suffice. But a multiaxial

stress complicates the definition of the yield point, and it actually

becomes a yield surface. A further complicdtion is the introduction of

anisotropy into the material. It is apparent that the locus of yield

points under various combinations of stress forms a surface in stress

space.

A possible interpretation of effective stress (;) is a single

surface in space for a single point on the work-hardening curve.

Therefore, one can say that yield will occur at a value of effective

stress, say ay, and is a function of the plastic strain. That is, the

general yield criterion can be written as

~ P)= 3 2 2 2.(.4y e = (r11011 + a22 + 2r 12 O1 1O2 2 + 2r 6 6 o1 2 ) (2.24)

In general, this expression defines the yield surface for an

orthotropic material under a multiaxial state of stress.

Parametric Study of the Plasticity Coefficients

In order to provide a graphical representation of the orthotropic

ellipsoid, the yield surface is plotted in a,,, 0229 012 space. A

27



parametric study of r 11 , r 12 , and r 6 6 is illustrated in Fig. 2.7.

The study of r 11 indicates a definite distortion of the ellipsoid

in the direction of increasing Oll for decreasing r 11 . It is clear

that r 12 (which multiplies the stress cross term 011022) affects the

symmetric elongation along the plane oal = 022. This result implies

that yield in a uniaxial stress state oriented along a principle

material axis will not be affected by r 12. But yield in a multiaxial

stress will be.

The plasticity coefficient r 6 6 can be studied by observing the

influence of a12. It is seen that a decreasing r 6 6 elongates the

ellipsoid in the direction of the shear stress component. This has

the effect of decreasing the contribution of 012 towards yielding.

Isotropic Behavior

It is of interest to consider the requirements necessary for

isotropic yield behavior. A material is isotropic if the yield

criterion is invariant under a rotation of axes. That is

-2 const 2 + 2+ + 2r6 20y 2 onst + 022 2r 12 o1 1O22  66 12 )

3'2 .2 , ,.2
a (rliO2l + 022 + 2r 12 OllO22 + 2r 6 6 o12 )

where a11, o2, 012 are in the rotated system. In order for this to

be true for any transformed stresses, then it is necessary that

r 1 1.0 (2.25)

r12 + r 6 6 = 1.0
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values of the plasticity coefficients.
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It is interesting to note that this is more general than the usual

isotropic restrictions of

r1 1 z 1.0 r 12 = -. 50 r 66 2 1.50

This point is demonstrated in Fig. 2.8 where the values

r11 2 1.0 r 12 = -. 25 r 66 = 1.25

are used. These curves are identical to those of Fig. 2.3.

Effect of Work-hardening on the Yield Surface

The anisotropic yield locus was shown to be

3 ( 2 + 2 +r 2r62y (r11 all 22 12'11'22 66012)

After the onset of initial yielding, plastic deformation will occur.

If isotropic hardening is assumed, the yield surface in stress space

will expand to each new stress as work-hardening continues as

illustrated in Fig. 2.9. Isotropic hardening results in equal tension

and compression for a uniaxial specimen. Note that the yield criterion

is anisotropic even though the hardening is isotropic. This is often

a common point of misunderstanding.

Anisotropic work-hardening theory accounts for changes in the

shape of the yield locus during plastic deformation. Anisotropic

hardening can be introduced by letting the plasticity coefficients

vary as a function of some state variable. This can be expressed as
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Figure 2.9 Illustration of isotropic hardening of
an anisotropic yield surface.
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cy(eP) - F(a, rij(.))

where * is some function of the plasticity, say eP. A graphic

depiction of this hardening behavior is presented in Fig. 2.10, where

not only is ;y changing, but so are r1l and r12.

LOAD PATH DEPENDENCE OF ACCUMULATED STRAIN

The plasticity theory formulated is incremental. The advantage

of this approach is that it allows modelling of complex loading paths

(including unloading). Hence, a discussion of path dependence is

pertinent.

Deformation Theory

The deformation theory of plasticity developed in 1924 by Hencky

assumes a unique stress-strain relationship. As presented by Kachanov

[EB

0r 2Es ePL (2.26)°ij = lij r iil

where

E a unit volume change due to mean pressure

=s a effective yield stress

and r is related to work-hardening. For example, r can be written as

a function of the effective stress or effective plastic strain as
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It was also shown by Kachanov that the governing equations of

deformation theory correspond to a non-linear elastic constitutive

representation. Having the load-deformation path uniquely defined

results in significant advantages during numerical analyses, in that

a Newton-Rhapson solution algorithm is easily implemented. Unfortu-

nately, there are limitations to the use of a deformation theory.

Kachanov demonstrated that the governing equations of deformation

theory coincide with incremental theory only during simple loading.

The two theories agree only when the stress components maintain the

same proportion to each other. A simple unloading path such as uniaxial

unloading would violate the requirements for deformation theory.

Unloading and Cyclic Loading

A monotonic uniaxial loading and corresponding unloading are

depicted in Fig. 2ii. One can imagine that the loading processes

can be viewed as a non-linear elastic material response. But upon

unloading, it becomes quite evident that the elastoplastic response

is not well represented by a single valued stress-strain relationship.

Since the study of problems with elastic unloading and residual

stresses is of primary interest in this research, then only

incremental theory will be used.

The uniaxial stress-strain behavior of a cyclic loading path is

pictured in Fig. 2.12. This illustration further reinforces the idea

of a non-unique stress-strain response and the limitations of the

deformation theory. Parenthetically, this figure also highlights
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the effects of isotropic hardening, that is, the self-similar expansion

of the yield surface.

* This parametric study highlights the complexity of the yield

criterion in a multiaxial stress state. If anisotropy were introduced

along with a complex geometry, one could see the difficulty in

predicting yield, as well as subsequent work-hardening. Because of

this behavior, Section 3will deal with the implementation of the

theory into a finite element program.

Some Particular Complex Loading Paths

Complex loading paths can be induced by the application of

multiaxial loads in sequence; for example, a uniaxial load followed

by a transverse load. Figure 2.13 compares three different load paths

involving the normal stress components. Figure 2.14 on the other hand,

illustrates the effect of shear along with a normal stress component.

In both figures, the case of simultaneous load application (which

would be the deformation case) is included. These results clearly

indicate the strong path dependence of accumulated strain. The final

stress-strain response is obviously not unique when different loading paths

are taken. This rules out deformation theory for this class of

problems.
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Figure 2.13 Elastoplastic deformation of an isotropic
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involving both normal stress components.
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Figure 2.14 Elastoplastic deformation response of an isotropic
material for three complex loading paths involving
a normal and a shear stress component.
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SECTION 3 FORMULATION OF COMPUTATIONAL TOOLS

INTRODUCTION

The study and application of orthotropic plasticity under multi-

axial loading requires the development of computational tools. Without

these tools, it is very difficult and expensive to gain insight into

these intricate non-linear problems. The incremental formulation of

plasticity makes the digital computer an ideal vehicle to investigate

load-deformation behavior under complex loading conditions.

This section discusses the development of a finite element program

designed to analyze orthotropic elastic-plastic problems. The

associated pre-processing and post-processing software are also

developed. The lamination theory discussed in Section 2 is extended

and included in a computer program which predicts load deformation

behavior of laminated orthotropic elastic-plastic materials.

OVERALL VIEW OF PROGRAM ANPLAST

A self-contained finite element program and peripheral software

written in Fortran 77 is presented.

Program Structure and Philosophy

The ANPLAST finite element program is designed for plane stress

anisotropic elastic-plastic analysis. It solves the non-linear problem

by dividing the total applied load into small load increments and then

sunming up all pertinent quantities such as stress, strain,
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displacement, and nodal loads [14]. The global stiffness matrix is

updated at the beginning of every loading increment to account for the

inherent material non-linearity associated with plasticity. The

analysis continues until the maximum load specified is reached, or as

"an alternative, the number of yielded elements has exceeded a maximum

specified by the user. The element and nodal quantities can be output

in a number of optional formats.

A descriptive FORTRAN flow diagram of the ANPLAST program is shown

in Fig. 3.1. This program is designed so that the main program

orovides the control and accounting of the analysis while the subroutines

carry out the main functions. The list of subroutines and a brief

description of each follows:

INPUT: Read in model, geometry, boundary conditions
and initialize the program control parameters.

MESG: Provide warning and error messages.

AI•AT: Form the element strain-nodal displacement matrices.

LOAD: Read in the incremental nodal loads.

FORMK: Form the global stiffness matrix.

ESMAT: Form the element stiffness matrix.

SSE: Form the incremental elastic stress-strain relations.

SSP: Form the incremental elastic-plastic stress-strain
relations.

ROT4: Angular transformation of 4th order tensor.

ROT2: Angular transformation of 2nd order tensor.

INVERT: Inversion of 3x3 matrix

DCMPBD: Decomposition of global stiffness [15] matrix.

SLVBD: Solution of global system of equations [15].
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STRESS: Calculate incremental element stresses and strains.

OUTELM: Output element stresses and strains.

OUTNOD: Output nodal stresses and strains.

RESTRT: Read and write element/nodal quantities for restart.

Comparison of Solution Algorithms

Using the finite element technique to analyze solids results in

the formation of a large number of simultaneous equations. There is a

choice to include the solution algorithm directly into the FORTRAN

code, or utilize scientific library utility routines (such as IMSL).

It was decided to incorporate the equation solver directly into the

ANPLAST structure. The ANPLAST program consequently is self contained

and therefore does not require any peripheral software other than the

usual FORTRAN 77 libraries.

A parallel version of ANPLAST which utilizes the IMSL routines

was also developed to verify the efficiency of the solution algorithm

taken from Segerlind (15]. The computation time on identical analyses

demonstrated that the IMSL version was actually less efficient than the

hardwired solution routines. Of course to be fair, it must be

realized that the IMSL routines are more general in nature, and easy to

access. In summary, the ANPLAST solution algorithms are efficient and

accurate and are more than adequate for the purposes of this research.

Program Re-start Capabilities

The majority of analyses conducted with ANPLAST involve an incre-

mental approach to the non-linear problem. This approach usually

requires at least 10 to 15 increments and results in considerable
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computation time. In addition, the size of each loading increment must

be estimated prior to the analysis and may turn out to be inappropriate.

Further, the amount of data which can be printed out for each increment

is significant and usually not known prior to the analysis.

Because of these difficulties, a "restart" option was built into

ANPLAST. This "restart" capability permits the analysis to be stopped

and started again at a later time. The analysis can be restarted at

whatever increment has been previously written to the restart file.

Two blocks of information are stored: the element quantities and the

nodal values. The analysis is re-started by reading these quantities

in and re-initializing the appropriate arrays. New incremental loading

is supplied and the analysis continued.

An additional benefit of the restart capability is the post

processing of the output. Only a minimal amount of information needs

to be printed out after each increment, since the analysis can be

restarted at any previous increment and all of the desired information

recovered.

Numerical Form of the Incremental Constitutive Relations

The incremental plastic strains represented in Eq. 2.14 have to

be written in a more explicit form so that they are compatible with the

finite element method. Starting with the equation for the effective

stress

/3 r1 a •2' + + 2r62
S" r 2l l2r 12 a1 1a2 2  2r6 12)

gives the effective stress increment as
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3 1
do = 2 - [(r 1101 1 + r12a22) do11 + (r 12 ' 11 + '22) do 2 2

0

+ 2r 66 a12do12 ] (3.1)

"When this is substituted back into the incremental flow rule of Eq.

2.14, the expression becomes [16]

1 11 1 a 1 1 1l 2 2 3 3 1

dep a a a a a a d9 (dip (3.2)
122 22 11 22 22 22 33 o221 3 d

deP a a a a a a do112 33 11 33 22 33 33

where

all = r 11oll + r 12o 2 2

a22 r12o11 + a22

a3 3 = 2r 6 6 012

In symbolic matrix notation this is written as

{dep} = [C]P {do} (3.3)

It is clear that the incremental plastic flow is a function of

the current stress state, effective stress, degree of work-hardening,

and the current increment of stresses (do 11 , do 2 2 , do 12 ). It is

interesting to note that the incremental plastic strains are not always
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orthotropic with respect to the incremental stresses. For example,

when 012 is non-zero, it is possible that the products a11a33 and

a22a33 are non-zero, and the normal incremental strain components are

then coupled to the incremental shear stress. This is an indication

that the intuition developed from elastic analyses may not always aid

in understanding orthotropic plasticity.

The expression for the total incremental stress-strain relation-

ship is obtained by summing the elastic and plastic strain increments

{de} = [c] {do} (3.4)

where

[c, = [c]e + [C]p

The [c] matrix relating incremental stresses and strains will be

utilized directly when establishing the element stiffness matrix.

Numerical Implementation of Loading and Unloading

The ANPLAST program is designed for cyclic loading and unloading.

Therefore, each element is permitted to yield, work-harden, unload

back into the elastic region, and then re-load back to the new yield

surface. This transition from elastic to elastic-plastic is calculated

on the element level and is not constrained by the direction of

loading at the remote location. There is no limit to the number of

times an element may pass through the elastic-plastic transition. This

capability will make possible a cycle by cycle analysis when
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investigating cyclic fatigue. At the present, only isotropic hardening

is available, but other hardening theories could be added with little

difficulty.

FORMULATION OF THE CONSTANT STRAIN TRIANGLE

The linear displacement constant strain triangle (CST) [15,17] was

chosen as the primary finite element in ANPLAST. The simplicity of

the formulation and implementation into a large FORTRAN program

provides considerable justification for choosing this element.

The Strain-Nodal Displacement Relations

A typical triangular element is represented in Fig. 3.2, along

with its displaced shape [17]. Because of the linear displacement

assumptions, the displacements at any global point (x,y) can be

expressed as the following linear functions

u(xy) = ui + clx + c2y

(3 .5)
v(x,y) = vi + c3x + c 4y

The constants c1 , c2, c3 , and c4 can be obtained in terms of the corner

displacements and the geometry of the element.

cI, c2 , c3 , c4 x F(ui, vij,UP v, uk, vk)

The three global strain components within the element can be obtained

from the assumed displacement field as follows
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e a
xx =Tx 1

e Lv c (3.6)
; . y y a y = 4

e U + V=c +C
"xy ay ax 2 3

The strains may be represented entirely in terms of nodal displacements

as defined in Fig. 3.2.

exx bj-bk 0 bk 0 -bj 0 ui1__

eyy = 2A 0 ak-aj 0 -ak 0 a vi
exy ak-aj bj-bk -ak bk a -b u

L 
v

where
A -element area

Vk

or in symbolic form

{e} = [A] {q} (3.7)

where {q} are the nodal displacements.

Element Stiffness Matrix Formulation

The incremental element stiffness matrix [K] can now be obtained

by use of Castigliano's Theorem, or other similar energy principles

[18] as
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[K] = ff [A]T[C][A] dxdy (3.8)

Siaice the strains and stresses are constant throughtout the

element, all three of the matrices may be brought outside the

integrals, and the area integration carried out explicitly. Since the

element is triangular and has straight edges the area integration is

direct and exact. Note, that when an element becomes elastic-plastic,

[C] becomes stress dependent and consequently so does [K]. This is

why the global stiffness matrix needs to be updated at the beginning

of every increment when plasticity has occurred.

FORMULATION OF THE ISOPARAMETRIC ELEMENT

It is generally thought that the isoparametric element offers

some advantage in efficiency and accuracy compared to the CST. For

this reason, a quadratic 8-node isoparametric element is implemented

into ANPLAST. The descriptive flow diagram and subroutine

descriptions are found in Figs. 3.3-3.4.

The Strain-Nodal Displacement Relations

Isoparametric elements are those for which the functional

representation of deformational behavior is employed in representation

of the element geometry [18].

x N iui y - Nivi

(3.9)u • ZNixi v • ZNiYi

where
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INPUT: Read in model geometry, boundary conditions

and initialize the program control parameters.

MESG: Provide warning and error messages.

AMAT: Form the element strain-nodal displacement matrices.

JACOB8: Form Jacobian matrix and determinant.

LOAD: Read in the incremental nodal loads.

FORMK: Form the global stiffness matrix.

ESMAT: Form the element stiffness matrix.

TSTIFF: Form full global stiffness matrix.

SSE: Form the Incremental elastic stress-strain relations.

SSP: Form the incremental elastic-plastic stress-strain
relations.

ROT4: Angular transformation of 4th order tensor.

ROT2 Angular transformation of 2nd order tensor.

INVERT: Inversion of 3x3 matrix.

VCVTFG: Transform stiffness matrix to band-symmetric form.

LEQ1PB: Solution of global system of equations.

STRESS: Calculate incremental element stresses and strains.

OUTELt.: Output element stresses and strains.

OUTNOD: Output nodal stresses and strains.

COEF: Supply coefficients for nodal extrapolation.

Figure 3.4 Subroutine description for the isoparametric
element version of ANPLAST.
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x,y = geometry of element

u,v = displacement field

Ni = shape functions

The shape functions for the general 8-noded isoparametric element

illustrated in Fig. 3.5 are

NI = - • (l-•)(l-)(+n+l) N2 - 1 (1 (l- 2 )(l-n)

N 1 (1+&)(1-n)(E-n-1) N= 1 (I-n2)(1+)
(3.10)

5 = • (l+•)(l+n)(•+n-l) N6 = ½ (l-• 2 )(1+n)

N7 - - (1-&)(1+n)(E-n+1) N8 = 2 (l-n2)(l-{)

The strain-nodal displacement matrix can be found by application

of the basic differential definitions of strain [18]

e x

e F (aN. aN.] u

yy ') ai) v

xy

or in symbolic notation

{e} a [A] {q} (3.11)
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Figure 3.5 Local coordinate system for t.e 8-node isoparametric
quadralateral element.
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and the derivatives are calculated by

aN aN.

ax = 1

aN 3N.

where [J]-1 is the inverse Jacobian transformation matrix which can be

calculated by

8 aN1 1

[J] = x2  Y2
8 aNi

8  YB

Element Stiffness Matrix Formulation

As was demonstrated for the constant strain triangle in Eq. 3.8

the incremental element stiffness matrix [K] can be obtained by use of

Castigliano's Theorem

[K] = fJ (A]T[C][A] dxdy (3.12)

"Inspection of Eq. 3.11 reveals the strains and stresses are not

constant throughout the element. Therefore, the matrix product

(A] TT[C][A] cannot be taken outside the integral. Consequently, a

numerical integration scheme must be implemented in the program.
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Numerical Integration of Element Matrices

Using the following transformation,

dxdy - det [J] d~dn -"

46

the element stiffness matrix now becomes

1 1

[K] f f [A] TT[C][A) JJI dgdn (3.13)
-1 -1

Now, by using the Gaussian quadrature technique, the element

stiffness matrix can be calculated by summing the matrix quantity

[A ]T[C][A] at the four selected Gauss points (g - ±.577350,

n = t.577350) and multiplying each by the appropriate weighting factor

(which in this case is unity). In summary, the stiffness matrix can

be represented in symbolic form as

4
[K] = [ EAJTEC][A] IJI wi (3.14)

i-I

w = 1.0 (weighting function)

It should be noted that for non-linear plasticity analyses,

partial yielding may occur in a given element. One particular Gauss

point may be yielded while the others are still elastic. This will

not present a problem when formulating the element stiffness matrix

since the elastic-plastic constitutive relations [C]p can be utilized

when yielding occurs at a particular Gauss point, and then the element
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stiffness matrix summed in the usual way.

PRE-PROCESSING AND POST-PROCESSING FEATURES

"- To make the utilization of ANPLAST more efficient and convenient

a number of pre- and post-processing software have been developed.

Mesh Generation and Plotting Features

The creation of a geometrical mesh is the first step in a finite

element analysis and can often be the most time consuming. Therefore,

four generic mesh generators have been developed for rectangular,

tapered quadrilateral, radial fan, and circular hole geometries. An

example of each type of mesh is illustrated in Fig. 3.6.

All of the programs operate on an interactive basis, prompting the

user for appropriate input parameters such as maximum and minimum

dimensions as well as mesh density. The mesh generators create two

files, one containing the nodal coordinates and the other the element

connectivity. The starting node and element numbers are required so

that successive files can be combined for constructing a more complex

geometry.

Bandwidth Optimization by Nodal Sweeping

A nodal sweeping technique was developed to join together the

various composite meshes into one integral mesh. The interactive nodal

sweeping program works by passing a plane or sphere through the

composite mesh and fusing it into one by removing any duplicate modes.

This sweeping process also renumbers the nodal connectivity list and

alters the stiffness matrix bandwidth. A judicious chose of sweeping

orientation can lead to a significant reduction in bandwidth.
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RADIAL FAN CIRCULAR HOLE
(CRACK TIP)

Figure 3.6 A collage of finite element meshes created
by the ANPTAST pre-processors. Each mesh
design demonstrates biasing of element
density.
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Considerable gains in analysis efficiency have been evident since

developing the nodal sweeping program.

Nodal Averaging of Stresses and Strains

Solution of the finite element equations provides element stressesS.

and strains. For the case of the isoparametric element, the stresses

are provided at the Gaussian integration points. The constant strain

triangle assumes the stress to be constant across the area of the

element. Unfortunately, the element or Gauss point locations usually

have no special geometrical significance, while nodes often fall on

convenient lines through the mesh. Therefore, nodal averaging

techniques were developed.

For both the triangular and quadrilateral elements, the nodal

values of stresses are found by averaging the contribution of stress

from each connecting element [18]. For the case of the isoparametric

element, individual element nodal stresses are calculated by extra-

polation of Gauss point stresses using a modified form of the element

shape functions [19]. The nodal stresses can be provided directly by

ANPLAST in either Cartesian )r polar coordinate systems.

Presentation of Results by Contour Plotting

The vast magnitude of results generated by a finite element

analysis makes necessary innovati-ve techniques for post processing.

One such technique is the contouring of stresses, strains, displace-

ments, or any combination of these quantities. In this particular

case, the contouring is based on interpolation of nodal quantities,

and plotted using the NCAR package available on the Purdue University

Computing Center system.
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Sections 4, 5, and 6 will provide examples of the use of the post-

processing programs developed for this research.

NUMERICAL EXTENSION OF LAMINATION THEORY

LAMINATE Computer Program ,.

The macroscopic laminate behavior described in Section 2 is

adapted for use in an interactive FORTRAN 77 computer program called

LAMINATE. The purpose of the LAMINATE program is to study the multi-

axial response of elastic-plastic laminates. The incremental laminate

load deformation equations can be written as

dN~ deodx '•x

dN y [Ai.] deo (3.15)
y 1J C y

dN oxy dxyj

where

NAij I [&ij~tK

K=1

LAMINATE logic has been designed to parallel that of ANPLAST so

that loading increments (dN x, dN y, dN xy) are applied and the resulting

mid-plane strains calculated. This is accomplished by inverting [Aij]

after it is numerically evaluated.

As the incremental analysis progresses, the in,:ividual layers can

become elastic-plastic, and their contribution ente-s through the

formulation of [Qij]K.
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The LAMINATE program can analyze a laminate consisting up to 10

orthotropic elastic-plastic layers. Each layer is characterized

*. individually, and obeys its own yield and work-hardening law. The

program output consists of individual layer stresses and overall
S.

strains.

Modifications to ANPLAST

The ANPLAST finite element program was modified to allow for ortho-

tropic elastic-plastic laminated material response. Basically, the

lamination theory developed for the LAMINATE program is applied to

ANPLAST. The primary modifications occur in the MAIN program and in

subroutine ESMAT where it is necessary to store each of the individual

layer stresses and check for yielding in each layer of each element.

When formulating the element stiffness matrix it is necessary to sum

over each layer through the thickness of the laminate. Only minor

modifications are made to the standard ANPLAST input structure. It is

interesting to note that analyzing a single layer is a special sub-set

of lamination theory, and therefore this version of ANPLAST can be used

for all analyses.

COMPUTER PROGRAM PORTABILITY

All of the computational programs developed in this section have

been designed to be portable. None of the programs utilize specialized

utility routines, such as those from IMSL. ANPLAST and LAMINATE can

be easily executed on interactive as well as batch processors. At

Purdue, both of these programs have been successfully run on the VAX

11/780, CDC6600, and CYBER 205. The majority of pre-processing and
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post-processing programs are best run on an interactive system as this

provides the greatest convenience for the user.

Since all of the programs utilize only standard FORTRAN 77 library

routines, they are completely portable to other systems. The only

limitation will be the amount of memory made available to the programs.

As the problems become larger, computers with a virtual memory system

appear to offer the only alternative unless out of core solution

algorithms are developed.
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SECTION 4 ELASTOPLASTIC STUDY OF A SHEET WITH A CIRCULAR HOLE

0.

INTRODUCTION

A thin sheet with a circular hole is analyzed, because it is one

of the standard benchmark problems. It is expected that many of the

trends discovered for the hole will apply to more severe discontin-

uities, such as cracked panels. Additionally, there is a body of

literature available containing some theoretical and experimental

elastoplastic solutions.

The ANPLAST program will be used to investigate the isotropic

elastoplastic response of a sheet with a circular hole and comparisons

made with some of the solutions in the literature. This study will

then be extended to orthotropic plastic flow, by conducting a parametric

study of the plasticity coefficients. The numerical results are

compared to an elastoplastic experimental study of a metal. matrix fiber

reinforced sheet. A problem with a remote complex loading path is also

considered.

SHEET WITH ISOTROPIC MATERIAL PROPERTIES

Elastic Loading: Comparison with Theoretical Solution

A thin sheet with isotropic elastic material properties was modeled

by ANPLAST and analyzed for the case of a uniaxially applied remote

load. The finite element mesh used is shown in Fig. 4.1. The fixed

grip end condition simulated by inputting very stiff material
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Figure 4.1 Fir~ite eliement mesh of a sheet with a circular
hole subjected to a uniaxial remote load with
fixed grip end conditions.
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properties to the top row of elements, and restraining rotation by

applying two additional boundary restrains.

In the following discussions notational definitions are as shown

in Fig. 4.2. A comparison of the nodal stresses and theoretical solution

"along a horizontal radial line (e = 00) is presented in Fig. 4.3. The

theoretical solution obtained from the computer program ELLPLAS

[12) was also used for the orthotropic analysis. It is clear

that the numerical model agrees quite well with theory. The small

discrepancies are attributed to the theoretical solution failing to

account for the finite dimensions of the sheet.

Figure 4.4 illustrates the elastic effective stress (3) distribu-

tion along three radial lines (e = 00, 450, 900), and again is in close

agreement with theory. The effective stress is of special interest

since it indicates the onset of plasticity. Figure 4.4 clearly

suggests a strong tendency of yielding to begin along the horizontal

symmetry line (e = 00) at the edge of the hole. However, at about 1.5

radii from the hole, ; along the 450 orientation begins to dominate.

This suggests that growth of any potential plasticity may begin

horizontally, but will eventually produce a lobe in the 450 direction.

Of course, the results presented are for a purely elastic analysis and

do not account for redistribution of stresses during plastic flow.
9

An iso-stress contour of the effective stress is presented in

Fig. 4.5. This unique contour pictorially represents the elastic

prediction of the plastic zone shape at the onset of yielding. Since

the contours are labeled with the appropriate values of ;, this figure

also provides the location of initial yield, and the direction of
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Figure 4.2 Local and global coordinate systems for a

sheet with a circular hole.
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Figure 4.3 Comparison of ANPLAST nodal stresses with the
ELLPLAS theoretical solution for a sheet with
a circular hole and isotropic material
properties.
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Figure 4.4 Comparison of ANPLAST effective stress distribution
with the ELLPLAS theoretical solution for an
isotropic sheet with a circular hole.
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Figure 4.5 Effective stress contour for the sheet with isotropic

material properties subjected to elastic loading.
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subsequent plastic flow. The contour plot is consistent with the

previous discussion involving the effective stress distribution.

ANPLAST Replication of Ramberg-Osgood Stress-Strain Behavior

The isotropic elastic-plastic constitutive model chosen was that

of a Ramberg-Osgood work-hardening type material, whose uniaxial

behavior is represented as (20]

n-i

where

E = elastic modulus

Gy = uniaxial yield stress

n = work-hardening power

a a uniaxial stress

The elastic and plastic strain components can be separated, and

can be written.

ee

p 3 n-1 (4.2)

For a multiaxial stress state, the uniaxial stress quantities are

replaced by the effective values, as defined in Section 2. The

effective plastic strain can now be written as a function of the
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effective stress

-. 3 n-i (4.3)

E
y

The ANPLAST program is designed so that any general work-hardening

law can be utilized. Therefore, according to Eq. 2.14, the

slope of the work-hardening relationship must be explicity defined.

For the Ramberg-Osgood work-hardening formulation, this is easily

accomplished by differentiating Eq. 4.3 and inverting, to give

d6 . E - (1-n) (44)

diBp = .y

where

= curve fitting parameter

a = effective stress

ay Z effective yield stress

In addition, the plasticity coefficients are assumed to have the

following values for an isotropic material

r• 11 , 1.0

r12 = - 0.50

r 66 = 1.50
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ANPLAST results for a uniaxially loaded isotropic elastic-plastic

specimen are plotted in Fig. 4.6 and compared to the ideal Ramberg-

Osgood material response represented by Eq. 4.1. The small deviations

in the comparison are due to the nature of the elastic-plastic finite

element analysis. While Eq. 4.1 represents a smooth continuous

behavior, ANPLAST assumes elastic, then elastic-plastic response

characterized by a distinct yield point. These results show that the

Ramberg-Osgood form of the stress-strain behavior is adequately

replicated. This is important for the later comparisons.

Elastoplastic Response

Isotropic elastic-plastic response of the circular hole problem

is of interest for two important reasons. First, it is one of the few

non-trivial problems where adequate theoretical and experimental

solutions exist. Second, it provides a benchmark from which ortho-

tropic el1stoplastic behavior can be gauged. The isotropic elastic-

plastic constitutive model chosen is that of a Ramberg-Osgood work-

hardening type material, as discussed in the previous section.

An incremental elastic-plastic finite element analysis of the

circular hole was conducted. The analysis was conducted by first

loading the model elastically until the first element yielded, then

taking 10 equal remote load steps of 3000 psi. As predicted by the

elastic analysis, yielding occurred at the hole along the horizontal

symmetry line. Yield of the first few elements took place at a

remote load of 17000 psi. This is reasonable since the elastic stress

concentration factor is approximately 3 and the uniaxial yield stress

is 50000 psi.
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Figure 4.6 Comparison of uniaxial Ramberg-Osgood stress-strain
response with the ANPLAST replication of this
behavior.
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A visualization of plastic zone growth is illustrated in Fig. 4.7.

This depiction of plastic zone growth is accomplished by placing an

asterisk (*) at the centroid of each element which is currently
S

yielded. The plastic zone initially progresses horizontally then forms

a lobe at around e = 450 at the higher loads. It is interesting to '"

note that net section yielding does not occur at the horizontal

symmetry line, but rather the lobe at 6 = 450 extends across the

specimen.

An experimental analysis of the plastic zone growth in an

isotropic elastic-plastic material was conducted by P.S. Theocaris and

E. Marietos in 1964 [21]. Utilizing the methods of birefringent

coatings and electrical analogy, they determined the elastoplastic

response of an aluminum alloy (57S) under remote uniaxial loading. The

plastic zone boundaries which they found during subsequent load

increments (I-VIII), are shown in Fig. 4.8. The growth of these

plastic zones progress in the same fashion as that calculated by

ANPLAST in the preceding analysis. Though a direct quantitative

comparison cannot be offered due to the different material properties,

geometry, and loading, the character of the results are the same.

Budiansky and Vidensek (20] arrived at an approximate theoretical

solution for the problem of a circular hole in an infinite plate for an

isotropic elastoplastic material. They also assumed the elastic-
S

plastic work-hardening was of the Ramberg-Osgood type. Using this

solution, the stresses and strains can be calculated at any point in

the body.
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The ANPLAST nodal stresses were plotted along three radial lines

(e = 00, 450, 900) and compared to the Budiansky-Vidensek solution in

Fig. 4.9 for two different remote loads. The effective stress distri-

bution for the same two load levels are shown in Fig. 4.10. The

"finite element results are in good agreement with the approximate

theoretical solution, with the greatest deviation occurring at the

higher remote load. Part of the discrepancy can be related to the

theoretical solution failing to account for the finiteness of the

specimen modeled by ANPLAST.

In 1958, Frocht and Thomson [22] studied the isotropic elasto-

plastic response of a sheet with a circular hole using the method of

photoplasticity. The results for a Ramberg-Osgood type work-hardening

material are presented in Fig. 4.11 alongside the ANPLAST and

Budiansky-Vidensek solutions. In general, the photoplasticity results

fall onto the same distribution as the other two solutions. They also

fall above the Budiansky-Vidensek solution at a radius of about 1.5 -

2.0 inches, as did the finite element results. It should be noted that

the actual dimensions of Thompson's test specimen were slightly

different than that modeled by ANPLAST. The results consequently were

normalized with respect to the hole radius and remote load.

The isotropic elastoplastic analysis capability of the ANPLAST

program has been verified.

Comparison of the Isoparametric Quadralateral anu Constant Strain
Triangle Elements

It has been suggested by a number of authors [19,4 that the

higher order isoparametric elements may provide superior performance
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Figure 4.9 Comparison of AMPLAST nodal stresses with the
Budiansky-Vidensek [20] theoretical solution
for an isotropic sheet with a circular hole
subjected to elastic-plastic loading.
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Figure 4.10 Comparison of ANPLAST effective stresses with the
Budiansky-Vidensek [20] solution for an isotropic
sheet with a circular hole subjected to elastic-
plastic loading.
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Figure 4.11 Comparison of ANPLAST stresses with an experimental
photoplasticity solution by Frocht and Thomson [22]
for the isotropic sheet with a circular hole
subjected to elastic-plastic loading.
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for certain plasticity analyses. The 8-noded quadralateral with a

4-point Gaussian integration scheme developed in Section 3 was used to

analyze the elastoplastic response of the isotropic sheet with a

circular hole. The plastic zone visualization for this particular

element is handled by placing an asterisk (*) at any Gauss point which

has exceeded the yield stress.

The mesh used in this analysis, shown in Fig. .12, is of the

same geometry as in the previous analysis conducted with the CST. In

addition, the material properties are also identical. The elastic

stresses are plotted in Fig. 4.13 along the horizontal symmetry line

(e = 00). Though there are more degrees of freedom for this mesh than

the corresponding CST mesh, the results are no better. In fact, the

nodal stress (a yy) on the hole boundary displays considerably more

deviation. This is probably due to the particular extrapolation

technique (19] used to derive nodal stresses from the Gauss points.

The plastic zone progression is illustrated in Fig. 4.14 for the

same remote stress levels as was presented for the CST. The results

for the quadrilateral element demonstrate excellent correlation with

the CST to the point where any discrepancies are almost indistinguish-

able. These findings suggest that there is no practical advantage for

selecting the isoparametric element over the CST, at least as far as

isotropic elastoplastic analyses are concerned. Therefore, due to the

simplicity and efficiency of the CST, this element will be the primary

analysis tool for this research.

83



COm

S.

FIXED
GRIP

8*

1>1

Figure 4.12 Finite element mesh of the sheet with a circular
hole utilizing the 8-noded isoparametric
quadralateral element.
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Figure 4.13 Isoparametric quadralateral stress distribution
for an isotropic sheet with a circular hole
subjected to elastic loading.
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quadralateral and CST elements for an isotropic sheet

subjected to elastic-plastic loading.
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SHEET WITH ORTHOTROPIC MATERIAL PROPERTIES

Elastic Loading: Comparison with Theoretical Solution

An elastic analysis of the sheet with a circular hole was conducted

for two orthotropic materials. The first, Boron-Aluminum, demonstrates

mild orthotropy, while the latter, Graphite-Epoxy, exhibits rather

strong anisotropy. Two analyses were conducted for each material, one

with the stiff material direction being oriented horizontally

(ef = 0°), the other with it rotated 900 (ef = 900).

The nodal stresses along the horizontal symmetry line are plotted

against the infinite sheet theoretical solution generated by the

program ELLPLAS in Figs. 4.15-4.16. The B-Al results are similar to

the isotropic material which is what one would expect since this

material is only weakly orthotropic. The G-Ep findings highlight the

effect of strong anisotropy on the stress distributions. When the

anisotropy is strong and the stiff material direction is vertical, the

gradient of ayy in the vicinity of the hole becomes quite steep. Also,

this orientation appears to significantly increase the elastic stress

concentration factor, while the opposite trend is true for ef = 00.

The finite element results are in good agreement with the

theoretical solution in most locations. For the G-Ep(ef Z 0°)

specimen, a considerable deviation is apparent for a xx away from the
4

vicinity of the hole. This can be accounted for by recalling that the

theoretical solution is for the infinite sheet. While the finite size

effect did not manifest itself noticeably for the isotropic material,

it appears that strong anisotropy can increase the finiteness of a

particular specimen. It is clear from these results that the
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Figure 4.15 Comparison of the ANPLAST stress distribution with
the ELLPLAS theoretical solution for a mildly
orthotropic (B-Al) sheet with a circular hole
subjected to elastic loading.
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orthotropic elastic capabilities of ANPLAST have been verified.

A Study of the Plasticity Coefficients Effect on Plastic Zone Growth

It is the intention of this study to investigate the effect of

introducing anisotropy into the plastic flow relations for the sheet

with a circular hole. Anisotropy is brought into the problem through

the plasticity coefficients, r 11 , r 12, r 6 6 . The previous elastoplastic

analysis assumed isotropic values of the plasticity coefficients. In

this investigation, the plasticity coefficients r 11 , and r 6 6 are varied

to determine how they affect yielding and subsequent plastic zone

progression. Since the anisotropy of the plasticity is of primary

interest, the examples in this section assume elastic isotropy.

The first analysis involves the variation of the plasticity

coefficient r11 from its isotropic value of unity. The assumed value

of r 1 1 is chosen to be 0.20. The uniaxial yield stress in the strong

direction for this material is 2.23 times greater than in the weak

direction. At the same time, it is necessary to reduce the magnitude

or r1 2 from -0.50 (isotropic) to -0.20, to prevent the anisotropic

effective stress from becoming negative. This finding suggests that

there are additional restrictions on the plasticity coefficients than

were mentioned in Reference [12], since a negative ; would indicate

negative incremental work, which is physically unreasonable.

When r11 is not unity, planar anisotropy is introduced in the

sheet, resulting in directional sensitivity of the plastic flow. Two

analyses were conducted, one with the strong direction oriented

horizontally (ef = 00) and the other with the weak direction horizon-

tally (ef = 900). THe Ramberg-Osgood work-hardening law and all the
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associated coefficients are as for the isotropic elastoplastic

analysis.

The plastic zone visualization for both analyses is pictured in

Figs. 4.17-4.18. In comparison to the isotropic case, it is clear that

the coefficient rli plays a dominant role in plastic zone progression.

While the plots for ef = 00 are somewhat similar to those for the isotropic

material, this is clearly not the case for ef = 900. When the strong

direction is oriented parallel to the load, it is evident that the

plastic zone progresses in the vertical direction, and does not

demonstrate the tendency to produce net section yielding. This

behavior is understandable, since the major stress component (a yy) is

parallel to the strong principal material direction, and is not as

likely to cause yielding.

Yielding at e = 900 is apparent for ef = gOo, yet is absent for

6 f = 00. Even the isotropic example eventually exhibited yielding at

this location. The explanation for this behavior is directly related

to the plastic anisotropy.

An iso-stress contour of effective stress at the onset of yield

is presented for both analyses in Fig. 4.19. These plots show that

the initial progression of the plastic zone in the vicinity of the

hole is strongly correlated with the stress distribution for the

elastic solution. These contours also highlight the strong gradient

of ; at the horizontal hole perimeter (e - 00).

Effective stress contours for ef = 00, and ef = 900 at remote

loads of 34000 psi and 76000 psi, respectively are shown in Fig. 4.20.

Both of these load levels represent a state where considerable
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Figure 4.18 Plastic zone growth for an orthotropic sheet subjected
to elastic-plastic loading. The strong material
direction is oriented parallel to the remote load.
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plasticity has occurred. These contours again accurately portray the

outline of the elastic elastic-plastic boundary, and are strikingly

similar to the elastic contours. One could hypothesize that the shape

of these contours will not deviate to any great extent, until the

plasticity has grown to such a scale that it interacts with the finite

boundaries.

That plastic work-hardening has occurred behind the initial yield

boundary can be detected by noticing an increase of some contours above

the initial yield ( y). Although this study has not approached the

subject of work-hardening and its effect on plastic zone growth, it

can be assumed that this parameter will control the rate at which the

growth occurs. It is likely that the degree of work-hardening will not

affect the shape of the plastic zone, rather that role is reserved for

the plasticity coefficients.

A similar investigation of the plasticity shear coefficient r 66

wasconducted by setting r11 back to its isotropic value (1.0) and

letting r 12 stay at -. 20. The coefficient r 6 6 was doubled from its

previous value and assumed to be 3.0. Both ef = 00 and e 9f 900 were

studied, but the analyses indicated that these two cases produce nearly

identical results. This finding makes sense if one considers that

r 6 6 multiplies only the shear term, and the transformation of the

stresses to either material coordinate system orientation will produce

a shear of the same absolute magnitude. Therefore, only one analysis

will be discussed.

The plastic zone visualization for this analysis is presented in

Fig. 4.21 and the results are almost identical to those of Fig. 4.17.
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Figure 4.21 Plastic zone growth for an orthotropic sheet

(r 66 - 3-0) under elastic-plastic loading.

The orientation of the principal material

directions does not affect this illustration.
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One of the subtle differences is a slight tendency for the plastic

zone to drift a bit more in the +e direction at the lower remote loads.

This can be associated with the accentuation of the shear stress which

is a maximum at approximately e = 450.

The effective stress contour at the inception of yield is

presented in Fig. 4.19. This contour is nearly identical to the

previous study of r 11 for ef = 00. In summary, it appears that the

effect of r 66 on plastic zone growth for this particular geometry,

loading, and principal material orientation is negligible.

A Study of Unloading and the Resulting Residual Stresses

A most interesting aspect of studying plasticity problems is the

effect of load reversal or unloading and the resulting reidual

stresses which are created. When a sheet with a circular hole is

loaded beyond its elastic limit a plastic zone results. The material

inside this zone is permanently deformed, and upon load reversal the

elastic material surrounding it tends to clamp down and produce

significant compressive stresses. It is the purpose of this section

to determine if the presence of plastic anisotropy will have a

prominent effect on the residual stress distributions.

The first unloading case involves the isotropic elastoplastic

material analyzed earlier in this section, and will serve as the basis

for comparison. In all cases, the maximum remote load was chosen to

be two times the load required to initiate yielding. The result of

this was a maximum remote load of 34000 psi for all examples except

for the anisotropic material where r 1 1 =0.20 and ef f 900.
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The unloading was carried out by first taking a small unloading step

which resulted in all elements becoming elastic (falling inside their

yield surfaces). With this accomplished, and the global stiffness

matrix reassembled, one large unloading step to zero vas taken. In no

case did any elements yield again. If yielding had occurred,

incremental unloading would have been required.

The residual stress distribution for each analysis is presented

in Figs. 4.22. Since the maximum load and plastic zone size are not

the same for each case, a direct comparison of the stress levels is

not appropriate. But it is clear that the character of the results

are the same. The vertical stress component, ayy, demonstrates a

significant negative residual stress component in the vicinity of the

hole perimeter while the other stresses are negligible. In each case

a compressive residual stress (a yy) is present out to approximately

V" to 1" away from the hole. In general, this brief study suggests

that planar anisotropy does not have a significant effect on the

residual stresses due to unloading.

A COMPLEX LOADING PATH

All of the previous analyses of the circular hole have involved

monotonic uniaxial remote loading. The purpose of this section is to

study the effect of non-proportional remote loading on plastic zone

growth and compare the final state of elastoplastic deformation for

each loading path.

The finite element mesh for this analysis is shown in Fig. 4.23.

The mesh used in the previous analyses was modified so that the

external dimensions are equal, and the fixed grip end condition
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Figure 4.22 ANPLAST residual stress distribution after
unloading from a remote stress which was
twice that necessary to initiate yielding.
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Figure 4.23 Finite element mesh of a sheet with a circular
hole for analysis of complex loading paths.
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removed. Three separate loading cases analyzed are as follows

I) Vertical Remote Stress (s yy) to 41000 psi followed by a
Horizontal Remote Stress (Sxx) to 41000 psi

If) Horizontal Remote Stress (sxx ) to 41000 psi followed

by a Vertical Remote Stress (s yy) to 41000 psi

III) A simultaneous application of both remote stresses

Sxx and syy to 41000 psi.

The isotropic elastoplastic material properties from the earlier

analyses are used in all three cases.

Discussion of Plastic Zone Growth

The plastic zone growth for Cases I and II illustrated in

Figs. 4.24-4.25 are identical except that they are oriented oppositely

about the respective symmetry axes. In both of these cases, the

plastic zone progression during the uniaxial portion of the loading is

of the same character that was observed in Fig.4.7 fur the fixed grip

analyses. After achieving a uniaxial remote load of 41000 psi, the

opposing transverse remote load is applied incrementally with interest-

ing results. All but six elements unload into the elastic regime,

until the transverse load reaches 33000 psi at which time additional

yielding occurs at the hole perimeter and remote locations.

The resulting re-yielding of material near the hole does not take

on the shape one would expect for a monotonically increasing uniaxial

load. The stress state is more complex due to the biaxial nature of

the remote loads, and the previous work-hardening has altered the

respective effective yield stress for all of the previously yielded

material. Further complications result from the assumed non-linear
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work-hardening law. Each element which has been plastically deformed

can be at a different location on the effective stress-effective

plastic strain relation.

The plastic zone visualization for Case III shown in Fig.4.26

represents a simultaneous application of the remote loads. Although

the loading is biaxial, the remote component- are stressed at

identical rates which results in proportional loading. Both the

geometry and loading are symmetric at all times as is the plastic zone

progression. With most of the shear stresses removed due to the

equibiaxial loading, the plastic zone progresses in rings. It is

interesting to note that unlike the previous two cases, plastic

deformation never reaches any of the remote loading boundaries.

Comparison of Permanent Deformation at the Final Loading Level

The previous study of plastic zonr ..gression clearly demonstra-

tes that the distribution c' currently yielded material is different

for each loading path 1ven though the final remote stress state is

the same. This finding suggests that plastic deformation in each

case is likely to be different. A shortcoming of this particular

plastic zone visualization technique is its inability to relay

quantitative information regarding the level of plastic straining.

Whether an element has experienced extensive plastic deformation or

has just yielded, the same asterisk (*) is placed at the centroid.

An iso-value contour of the plastic deformation would provide

the necessary quantitative information. A suitable measure of plastic

deformation for this purpose is the effective plastic strain (eP).

Contours of eP for Cases I, II and III are presented in Figs. 4.27.
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Figure 4.26 Plastic zone growth for an isotropic sheet subjected
to a simultaneous biaxial remote loading (Case III).
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It is obvious from these contours that the final distribution and

magnitudes of permanent deformation arW quite different for each loading

path, even though the final remote stress states are identical. These

findings substantiate the premise of load path dependency and highlight

"the necessity of an incremental plasticity approach.

COMPARISON TO EXPERIMENTAL RESULTS FOR A CONTINUOUS FIBER

REINFORCED METAL MATRIX COMPOSITE

An experimental study of the elastoplastic response of a unidirec-

tional Boron-Aluminum metal matrix composite strip with a circular

hole was conducted by S. Rizzi [24]. This particular experiment

involved loading a B-Al specimen as shown in Fig. 4.8. Multiple

strain gage recordings were taken in the vicinity of the hole. The

finite element mesh used to analyze the test specimen is the same as

for the other fixed grip analyses except the dimensions were scaled to

those of Fig. 4.28.

The test was run by increasing the load until certain present

breakpoints were reached at which time the specimen was unloaded to

zero. Since most of the strains were recorded continuously, a strain

distribution at any load can be easily obtained.

An elastic analysis was conducted to reconfirm ANPLAST's predictive

capability for an orthotropic material. The elastic properties used

* are those described for B-Al in Reference [12]. The test specimen did

not appear to demonstrate any permanent deformation until arriving at

a remote stress of approximately 4000 psi. Therefore, to ensure a

purely elastic response the comparison is made at a much lower load.

The experimental results shown in Fig. 4.29 are plotted against the
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Figure 4.28 Geometry of test specimen used by Rizzi [24) for
experimental determination of the stress-strain
behavior of a Boron-Aluminum metal matrix composite.
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hole subjected to uniaxial elastic loading.



finite element solution at a remote stress of 1700 psi. The

correlation between the two solutions is acceptable, the differences

attributable mainly to the inherent inaccuracies of measuring

low strain levels.

The elastoplastic material properties were also chosen from

Reference [24]. The elastic-plastic loading pathwas chosen so that it

follows the test procedure as close as possible. The elastic analysis

revealed that initial yielding would occur at the horizontal hole

perimeter (e = 00) at a remote stress of 4000 psi. Therefore, the

first loading step, which must be elastic, goes straight to 4000 psi,

and then the remainder of the elastic plastic loading steps vary in

magnitude but are never larger than 500 psi. The ANPLAST loading path is

explicitly defined in Fig. 4.30. Notice that increments 2, 6, 14 and

17 coincide with the test unload points. The desired residual stresses

and strains are obtained by re-starting the analyses at these unload

points for elastic unloading. Re-yielding of elements during unloading

was never observed.

The plastic zone visualization in Fig. 4.31 follows the expected

pattern developed throughout this section. At the maximum remote

stress of 10700 psi, the plastic zone has progressed completely across

the specimen. Along the horizontal symmetry line, plasticity has also

spread across the net section, but only during the last couple loading
0

increments. Therefore, it is reasonable to assume that little or no

permanent strain will be found at the outer strain gage locations. To

evaluate the analysis more critically, a direct study of the elastic-

plastic strains is in order.
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Figure 4.30 ANPLAST incremental loading path for analysis
of the B-Al strip with a circular hole.
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Figure 4.31 Plastic zone growth for the B-A1 strip subjected
to elastic-plastic loading.
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The longitudinal and lateral strain distributions for three

elastic-plastic remote stresses (6000 psi, 7700 psi, 10700 psi) are

plotted against the experimental results in Figures 4.32-

4.33. The residual strains produced after unloading are included

within each plot. The agreement between the numerical solution and

the experimental results are quite good.

Due to the very stiff nature of the reinforcing fibers, the

lateral strains (exx) are small in magnitude and both the analysis

and experiment demonstrate this. The longitudinal (e yy) residual

strains demonstrate that ANPLAST does a good job of predicting the

plastic deformation. The lack of any substantial residual strains at

the remote gage locations is in agreement with the plastic zone

visualization. It is interesting to note that even though net section

yielding occurs, the elastic strains still dominate, even at the hole.

Figure 4.34 highlights the stress-strain response at the innermost

strain gage during the complete load-time history of the test. These

results substantiate the premise that ANPLAST more than adequately

predicts the response of structures which exhibit anisotropic

elastoplastic behavior.
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Figure 4.32 Comparison of ANPLAST strains with experimental results
of Rizzi (24] for the B-Al strip with a circular hole
subjected to elastic-plastic loading.
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Figure 4.33 Comparison of ANPLAST lateral strains with the
experimental results of Rizzi [24] presented
on expanded scale.
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load-history of the test. The strain gage islocated at the innermost position along the

horizontal symmietry line.
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SECTION 5 ELASTOPLASTIC STUDY OF CRACKED PANELS

INTRODUCTION

The study of fracture and fatigue crack propagation often requires

an understanding of the deformation state in the vicinity of the

crack tip. The purpose of this section is to investigate some of the

material and loading parameters which effect crack tip plasticity.

Special attention will be given to the relative effect of anisotropy

on plastic zone growth.

This section will first deal with the elastic study of center-

cracked and edge-cracked panels using ANPLAST. Two numerical

techniques for extracting the Mode I stress intensity factor, will be

presented. An elastoplastic analysis of large scale yielding in

isotropic and orthctropic edge cracked panels will also be conducted

using ANPLAST.

ELASTIC ANALYSIS OF CENTER CRACKED PANELS

The center cracked panel provides a benchmark problem to further

verify the performance of ANPLAST. This geometry also furnishes the

opportunity to study the affect of anisotropy on the stress distribu-

tions.

Comparison of Stress Distribution with Theory

The center cracked panel provides the simplest geometry for

consideration of the elastic stress distribution in the vicinity of the
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Figure 5.1 Finite element mesh of a center cracked panel
with a uniaxial remote load and fixed grip end
conditions.
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Figure 5.2 Illustration of the local and global coordinate
systems for a cracked panel.
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Figure 5.3 Comparison of the ANPLAST stress distribution
with the ELLPLAS theoretical solution for an
isotropic panel with a center crack subjected
to elastic loading.
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Figure 5.4 Comparison of the ANPLAST stress distribution with
the ELLPLAS theoretical solution for a weakly
orthotropic (B-Al) panel with a center crack
subjected to elastic loading.
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Figure 5.5 Comparison of the ANPLAST stress distribution with
the ELLPLAS theoretical solution for a strongly
orthotropic (G-Ep) panel with a center crack
subjected to elastic loading.
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crack. A finite panel with a center crack as illustrated in Fig. 5.1,

wasanalyzed with ANPLAST and the results compared to the theoretical

solution provided by ELLPLAS. Isotropic and anisotropic materials are

investigated.

In the following discussions notational definitions are as shown

in Fig. 5.2. The stress distributions along a horizontal radial line

(e = 00) are presented in Figs. 5.3-5.5. The ANPLAST distribution of

stresses for the isotropic panel and both B-Al orientations are in

close agreement with the theoretical solution. The more strongly

aniostropic graphite-epoxy panel exhibits different behavior,

especially when the fibers are parallel to the crack (ef = 00). In

this case, axx dominates in the general vicinity of the crack tip.

The numerical model of the center cracked panel represents a

finite width and length sheet. The ELLPLAS solution is that for an

infinite sheet. Though the finite effect is minimal for the isotropic

material and weakly anisotropic B-Al, it appears that strong anisotropy

can amplify the finiteness of the specimen. This is evident from the

behavior of a xx in the graphite epoxy center cracked sheet. When the

fibers are parallel to the crack, axx decays dramatically over the

width of the ;pecimen, while for ef = go9, this stress component has

dropped to almost zero a very small distance from the crack tip. These

results indicate that if an accurate elastic analysis is desired in

the vicinity of the crack tip, mesh density should be a factor of

anisotropy as well as geometry.
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Philosophy of Finite Element Mesh Design

The analysis of the center cracked panel from the previous section

used a radially designed finite element mesh. A symmetric radial fan

is centered about the crack tip and the mesh density is biased toward

the crack tip. An alternative to this mesh design would be a rectang-

ular mesh as illustrated in Fig. 5.6. One possible advantage for

selecting the rectangular design would be the ease of mesh generation.

A concern, is the relative accuracy in representing the stress

distribution in the vicinity of the crack.

An elastic analysis was conducted utilizing the rectangular mesh;

the results arepresented in Fig. 5.7. The numerical results are again

plotted against the theoretical solution and compared to the respective

plot for the radially designed mesh. While the stress distributions

for the rectangular mesh are reasonable, it is apparent for 6 = 900,

that the radial design is superior. It is interesting to note that the

rectangular mesh contains 104 more d.o.f. than does the radial mesh.

An elastic analysis was used to compare the two mesh designs, yet

it is the study of plasticity which is given primary emphasis in this

research. When considering the initiation of yield and subsequent

plastic flow, one must recall that these processes are calculated on

the element level. It is obvious that the radial mesh design provides

many more elements in the e direction, thus allowing a better

description of the gradients associated with plasticity. Therefore,

all elastoplastic analyses of cracked panels will utilize a radially

designed mesh.
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Figure 5.7 Comparison of ANPLAST stress distribution for theradial and rectangular mesh designs of an isotropic
center cracked panel subjected to elastic loading.
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Comparison of Constant Strain Triangle and Isoparametric Quadrilateral

Elements

The primary finite element used in the ANPLAST program is the

constant strain triangle (CST). It has been suggested by a number of

authors L23, 25] that the higher order isoparametric element with a

reduced integration scheme may provide superior results for analyses

involving strong anisotropy. Therefore, the 8 node isoparametric

element developed in Section 3 was used to analyze the center cracked

panel and the results compared to the CST. The mesh used for this

analysis is illustrated in Fig. 5.8.

The results from the comparative study are presented in Fig. 5.9.

The results are presented for an isotropic, B-Al (ef = 00 ), and G-Ep

(of = 90o) material. Note the erratic behavior of the two nodal

stresses closest to the crack tip. This is due tc the nodal extra-

polation technique failing to account for the 8 node quadralateral

being degenerated to a 6-node triangle.

Of interest is the axx distribution for the graphite epoxy

specimen since this resulted in the greatest deviation for the CST. It

appears that the quadrilateral element does provide a better represen-

tation of this stress gradient. But rather than the 8 noded quadri-

lateral possessing any inherent advantage, the improved performance

is likely due to the available degrees of freedom. The quadrilateral

mesh has almost twice the degrees of freedom than does the CST mesh.

Therefore, a more refined CST mesh should produce results similar to

the 8 node quadrilateral, for approximately the same cost (running

time). The use of either element in a appropriately refined mesh
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Figure 5.8 Finite element mesh of the center cracked panel
utilizing 8-nodes isoparametric elements.
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Figure 5.9 Comparison of the isoparametric element results with
the ELLPLAS solution for the center cracked panel
subjected to elastic loading.
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should result in adequate performance.

ELASTIC ANALYSIS OF AN EDGE CRACKED PANEL

All of the material behavior investigated in this research has

exhibited an elastic response before the onset of plasticity, and it

is clear that the elastic stress distribution plays a significant

role in subsequent plasticity. In addition, the elastic behavior of

cracks is analyzed because of the necessity for understanding some

basic fracture mechanics parameters and how they are influenced by

anisotropy.

Effect of Anisotropy on Stress Distribution

It is reasonable to expect that the elastic stress distribution

in the vicinity of the crack tip for the edge cracked panel retains

the same character as was discussed for the center crack. For cases

of isotropic or weakly anisotropic material behavior, ayy will dominate

along the horizontal cross section. The introduction of strong

anisotropy will exaggerate the finiteness of the panel and redistribute

the stress gradients. Therefore, similar modeling techniques were

utilized for analyses of the edge cracked panel as was Lsed for the

center crack.

A detailed understanding of the individual stress components does

not provide any direct information concerning the onset of yield. But

an equivalent quantity such as the Von-Mises [2 )] effective stress

parameter provides useful insight into isotropic elastoplasticity. A

parametric study on the effect of elastic anisotropy via the Von-Mises

stress can be conducted in a meaningful way only if one assumes all

plasticity behavior is isotropic.
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Five elastic analyses of an edge cracked panel as shown in Fig.

5.10were conducted for an isotropic, B-Al (ef = 00, 900), and G-Ep

* (6f = 00, 900) material. The results are in the form of isu-stress

contours of the Von-Mises quantity as illustrated in Figs. 5.11-5.13.

Since all of the materialswere dssumed to behave in an isotropic

plastic manner, the Von-Mises contours leads us to the conclusion that

plastic zone shape is strongly linked to the strength and orientation

of the elastic anisotropy. This is clearly illustrated for the G-Ep

specimen response, which demonstrates the significant distortion of

the contours in the stiff material direction. By noting the maximum

contour level, one can conclude that the remote load which initiates

yield is also a function of the strength and orientation of the

elastic anisotropy.

It is clear that elastic anisotropy can have a substantial effect

on the elastoplastic response. Earlier sections have documented the

consequences of introducing anisotropy into the plastic flow relation-

ships. For orthotropic-elastic orthotropic-plastic materials, these

two effects will superimpose and result in an extremely complex

structural response. This highlights the convenience of using a

numerical tool, like ANPLAST, to analyze these types of problems.

Stress Intensity Determination by an Energy Technique

The advantage of using an energy technique to calculate fracture

parameters lies in the fact that no extrapolation or curve-fitting is

needed. In particular, the strain energy release rate, gI, of a

cracked panel can be derived by investigating the change in compliance

of the system as the crack extends. It can be shown [26] that the
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Figure 5.10 Finite element mesh of a transverse edge cracked
panel with a uniaxial remote load and fixed grip
end conditions.
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Figure 5.11 Mises stress contour of a isotropic edge cracked
panel subjected to elastic loading.
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change in elastic strain energy during crack extension is equal to the

change in potential energy (&V) and can be expressed as

u2 u 1

AV--[ Pd6- f Pd6] =- P(u2-u) (5.1)

where (u 2 -ud) is the deflection of the system in the direction (6) of

the applied force (P), at the point where the force is applied. The

change in strain energy (&U) can now be equated to the compliance of

the system

AU a AV = ½ P(Au) (5.2)

and the strain energy release rate defined as the change in strain

energy due to a small increment of crack extension (Aa) becomes

.U Ii U I Pa (1.3)
a-o

It is now clear that g, can be estimated by measuring the deflections

of the system at the point of load application.

The compliance method is ideally suited for use with the finite

element method. Since the finite element technique directly solves for

displacements, no interpolation of stresses or strains is required.

The work done by external forces is easily calculated by multiplying

the applied nodal loads by the respective change in displacements due

to a small crack extension. It is interesting to note that deriving g1
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by the compliance method does not require any special technique or

program when investigating orthotropic materials.

Although g, can be used directly in many fracture and fatigue

crack propagation applications, it is still quite common to utilize

the stress intensity factor (KI). The relation between g, and K, for

an isotropic material under a plane stress condition is [26]

K2

g1 Z (5.4)

where E is the modulus of elasticity. After calculating gl, it is

easy to find KI. For an orthotropic material, the relation is not

readily available, but is in the form

K 2
91

where

= f(E 1 , E2 , V12, G12 ) (5.5)

To determine s analytically is cumbersome, but taking advantage of the

properties of the center-cracked panel, s can be found numerically.

For a center-cracked panel, where the finite width effects are

negligible, KI is identical for both the isotropic and orthotropic

material cases [27). Therefore, K1 can be found from the simple

expression
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KI=

Using the compliance method previously explained, and the center-

cracked finite element model, g, is calculated for a B-Al specimen

with the fibers oriented parallel to the crack. Since B was calculated

and found to have a value of 9.11x106 psi, it is possible to find KI

for any B-Al edge-cracked geometry.

A stress intensity calibration chart prepared for an edge-cracked

panel is illustrated in Fig. 5.14. The solid line represents the

solution for an isotropic material, with bending restrained. The four

finite element meshes used for these analyses are similar to the mesh

in Fig. 5.10 except for the length of the crack. The triangular

data points represent KI derived by extrapolation of the stresses

as discussed in the next section.

Stress Intensity Determination by Extrapolation of the Stresses

The determination of the Mode I stress intensity factor K, by

direct extrapolation of the stresses is of interest in this section.

For anisotropic materials, the near field stresses can be represented

in terms of Ki, r, and a as [27]

xx fxx(q)

a yy y (e) (5.6)

X KI f (0)_xy /2 xy
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Figure 5.14 Stress Intensity Factor (KI) chart for the edge

cracked panel containing the isotropic handbook
solution and that obtained by ANPLAST for B-Al.
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where f ij(e) = appropriate functional form of e. This equation can

be easily re-arranged so that KI appears on the left handside of each

expression as

K fij F)(5.7)

Assuming that f ij(e) is known, it is apparent that KI can be obtained

from a finite element analysis since the stresses aij at each location

(r, e) are known. Ideally, any selection of stress points would

result in the same value of KI. Unfortunately, if stresses are

sampled from the FEM results at various angular and radial locations,

differing values of KI are obtained. Because of this variation, an

extrapolation technique along with a least squares curve fitting

procedure must be used.

The first step is to design a finite element mesh which centers

a radial fan on the crack tip. This mesh orientation provides many

1ines of constant e on which the extrapolation technique can be used.

After the finite element analysis is completed, the nodal stresses

are post-processed and plotted along radial lines, as shown in Fig.

5.15. Note that in this figure the ordinate is (axx + a yy) Vr and

the abscissa is simply rr . It was found in Reference [16] that the

sum of the normal stress components behave in a more predictable

manner, so this technique was utilized here. The reason for plotting

the stresses in this manner can be demonstrated by again rearranging

Eq. 5.6 written as
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Figure 5.15 Stress distribution along 19 radial lines
emanating from the crack tip of the transverse
edge cracked panel.
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Ki[fxx(e)+fyy (e)]

xx + Oyy (5.8)

Since KI is defined in the limit as the radial distance approaches

zero, one can extrapolate the results in Fig. 5.15 for each radial

line. In essence, each line is being extended to finds its intercept with

the y-axis. This is done in a least squares sense by curve fitting

a straight line through each set of data points. Usually, the nodal

stress closest to the crack-tip is excluded since it appears to be

distorted. Now, for each of the nineteen (19) radial orientations,

(Oxx + Oyy) r/ is obtained.

The next step is to use ELLPLAS to provide f ij(e). The advantage

of utilizing ELLPLAS is that it can furnish fi .(e) for an orthotropic

material as well as an isotropic material. Entering some value of KI

and multiplying by f ij(e), the left hand side of Eq. 5.8 can be

calculated. KI is now determined by using a least squares fit of the

data provided in the previous exercise. The results for an isotropic

and B-Al edge-crack are illustrated in Fig. 5.16. It is interesting

to note that the stress intensity factor KI extrapolated for both

cases was the same (17000 psi VIM) and is probably due to the weak

elastic anisotropy exhibited by B-Al.

It is apparent from the results presented that the energy method

is the most accurate and simplest for finding KI. Although it requires

two analyses to be run, the post-processing of data is minimal and

the results are very good. The stress component extrapolation technique

wasinvestigated as a means of determining the quality of the field
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quantities for subsequent plasticity analysis. In general, the

quality of these results is good.

ISOTROPIC ELASTIC-PLASTIC ANALYSIS OF AN EDGE CRACK

The isotropic elastoplastic behavior of an edge cracked panel was

investigated to provide a benchmark solution from which orthotropic

elastoplastic response can be compared.

A Study of Plastic Zone Growth

An isotropic elastic-plastic analysis of the transverse edge-

crack was conducted. Work-hardening was expressed by the Ramberg-Osgood

relationship discussed in the previous sections. The progression of

the plastic zone is illustrated in Fig. 5.17. Note the distinctive

lobe at about 600, where the Von-Mises yield criterion [2 ] predicts

the maximum extent of the plastic zone. Fig. 5.18 provides additional

insight into the effective stress distribution and how it ultimately

controls the plastic zone development. At a remote stress of 24,500

psi, the plastic zone has progressed more than halfway across the

width of the specimen, indicating that large scale yielding is being

considered.

The consequences of mixed mode loading on plastic zone growth

investigated by the analysis of an oblique crack illustrated in Fig.

5.19. The remote loading is uniaxial, but shear stresses are now

introduced along the plane of the crack. The plastic zone progression

illustrated in Fig. 5.20 demonstrates a significant departure from the

transverse crack behavior. The effective stress contours in Fig. 5.21

substantiate the qualitative plastic zone representation. Considering the

previously discussed analogy which relates plastically deformed
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Figure 5.17 Plastic zone growth for an isotropic edge-cracked
panel subjected to elastic-plastic loading.
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Figure 5.18 Effective stress contour of an isotropic edge-cracked
panel at the onset of yielding.
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Figure 5.19 A finite element mesh of an oblique edge-cracked
panel subjected to uniaxial loading and fixed
grip end conditions.
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Figure 5.20 Plastic zone growth for an isotropic oblique
edge-cracked panel subjected to elastic-
plastic loading.
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material to damage initiation, it is clear that under cyclic loading

the oblique crack will tend to turn and propagate horizontally, which

has been observed in the laboratory [28].

The Effect of a Remotely Applied Transverse Stress

In most practical applications the remote loading is rarely

uniaxial. For an elastic analysis of a crack perpendicular to a

remote uniaxial load, classical LEFM suggests that the addition of a

remote load parallel to the crack will not contribute to KI. In a

superficial manner, this suggests that a transverse biaxial loading

will have no effect on fracture or fatigue crack propagation. If

plasticity is considered, then a transverse remote stress will change

the character of the problem.

Three different ratios (x) of transverse to axial load were applied

to the transverse edge cracked model. The axial (s yy) remote stress

.s used to gauge the load incrementation and the transverse stress

(Sxx )was added simultaneously in the stated proportion. Three sets

of plastic zones progressions are illustrated in Fig. 5.22.

The lowest level of transverse loading (x = 0.5) results in a

change in both size and shape of the plastic zone in comparison to the

ourely uniaxial remote loading. The effect of the remote biaxial

stress appears to be a flattening of the 600 lobe. At a remote load

if 7500 psi, the plastic zone for the uniaxial case is more than

halfway across the width of the net cross-section, but for the

transverse loading cases (x =0.5 and x = 1.0) it is visibly reduced.
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Figure 5.22 Plastic zone progression for an isotropic
transverse edge-cracked panel subjected to
proportional biaxial remote loading.
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This behavior is related to the shape of the isotropic yield

locus. If yield has been reached for a purely uniaxial stress, the

application of a transverse load results in a translation inside the

yield surface, and an unloading to an elastic state. For the edge

crack analysis, the biaxial loading is proportional, but a similar

reduction in yielding is observed with respect to the uniaxial remote

load.

The maximum transverse remote loading (x = 2.0) demonstrates

significantly different plastic zone progression. The transverse load

appears to have completely dominated the Mode I component of the

plastic zone. The crack tip acts as a concentration which initiates

yielding, but the transverse loading quickly induces net section

yielding.

It has been demonstrated that the plastic zone is significantly

altered due to a transverse remote load. Therefore, it is reasonable

to assume that transverse loading will in turn have an impact on

fracture and fatigue behavior.

A Study of Unloading and the Resulting Residual Stresses

The transverse edge cracked specimen was loaded into the elastic-

plastic regime to a remote load of 21p0O psi and then unloaded. This

unloading was conducted in an incremental manner to allow the yielded

material to become elastic again. Indeed, after a very small

unloading increment, the entire panel (all elements) becomes elastic,

until the last unloading increment where a few elements in the vicinity

of the crack tip re-yield.
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The elastic material which surrounds the plastic zone compresses

the permanently deformed material upon unloading. The outcome of this

compressing action results in residual stresses, especially near the

crack tip where the plastic strains are the greatest. Fig. 5.23

presents the residual stress distribution for the above unloading case

and a 1.35 overload followed by unloading. In both cases, the

classical compressive stress (a yy) is present in the near vicinity of

the crack tip. It is the compressive residual stress component which

is thought of as retarding any subsequent fatigue crack propagation.

ORTHOTROPIC ELASTIC-PLASTIC ANALYSIS OF AN EDGE CRACK

The effect of anisotropy was considered in the analysis of the

edge cracked panel to gain a better understanding of the differences

from isotropic behavior.

The Effect of Anisotropy on Plastic Zone Growth

The progression of the plastic zone in an orthotropic (B-Al)

elastoplastic transverse edge cracked panel was investigated. The

plastic zone visualization is presented in Fig. 5.24 for the case where

the fibers are parallel and perpendicular to the crack. The elastic

effective stress contours are plotted in Fig. 5.25. As was the case

for the isotropic edge crack, large scale yielding was considered.

The results for the transverse crack parallels the elastoplastic

analysis of a sheet with a circular hole. The plastic zone shape for

the isotropic material and B-Al (ef = 00) are similar, while for

ef= ao0 a significant departure is observed. With the fibers perpendicular

to the crack the majority of plastic deformation occurs in a vertical

band directly above the crack tip. Unlike the circular hole, a small
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Figure 5.23 ANPLAST residual stress distribution following
unloading for an isotropic transverse edge
cracked panel.
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area of permanent deformation is present in front of the crack tip.

The oblique crack model was also analyzed to investigate

plasticity effects in B-Al under a mixed mode loading. Fig. 5.26

illustrates the growth of the plastic zone for the case where the

fibers are running parallel to the crack. The results are signifi-

cantly different from those observed for the isotropic case. The B-Al

plastic zone tends to produce two lobes: one directly in line with

the crack tip (parallel to the fibers) and another at 1200 in a

clockwise orientation.

These results again support the assumption that under cyclic

loading, plastically deformed material represents a likely sight for

further crack initiation. It has been observed in the laboratory [12]

for B-Al edge cracked specimens that fatigue crack propagation proceeds

parallel to the fibers, which is consistent with Fig. 5.26.

The Effect of a Remotely Applied Transverse Stress

The consequences of a remotely applied transverse stress on a

B-Al edge cracked panelwas studied. The analysis parallels the study

for the isotropic panel, except the transverse to axial load ratios (x)

were 1.0, 2.0, and 4.0 respectively. The plastic zone visualizations

are presented in Fig. 5.27. Only the case of the fibers parallel to

the crack (ef = 00) is analyzed.

The plastic zone progression for all load ratios demonstrates

that the transverse loading has almost no effect on plastic deforma-

tion. Both the shape and relative magnitude of these plastic zones

are unaltered. This behavior can be explained if one considers the

anisotropy induced by the fiber orientation. The predominant stress
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Figure 5.26 Plastic zone growth for an orthotropic B-Al oblique
edge-cracked panel subjected to elastic-plastic
loading.
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Figure 5.27 Plastic zone growth for an orthotropic B-Al
transverse edge-cracked panel subjected to
proportional biaxial remote loading.
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induced by the transverse load, s xx(a,), is multiplied by the

plasticity coefficient r 1 1 in the effective stress calculation. Since

r11 is only 0.001 for B-Al, the transverse stress has almost no effect

on yield.

One location where the plastic zone does appear to be affected is

towards the fixed grip location. Here, the transverse stress has the

effect of unloading a few elements due to the tilt of the yield locus

as was discussed for the isotropic material. In any case, one can

state with some authority that transverse loading will not strongly

influence fracture or fatigue of a B-Al edge cracked specimen with

this particular material orientation.

A Study of Unloading and the Resulting Residual Stresses

The B-Al edge cracked panel was subjected to two separate load

excursions. The residual stress distributions are plotted in Fig.

5.28. The results exhibited are almost identical to the isotropic

examples. Rather large compressive stresses can be found in the

vicinity of the crack tip, with ayy dominating in both cases.

Again, the classical line of thinking is that residual compressive

stresses tend to inhibit further fatigue crack propagation. Therefore,

one can conclude that any deviation from classical retardation for

orthotropic plastic materials is not a stress related phenomenon.

A Look at the Crack Opening Profile

It has been suggested [26] that the crack opening displacement

(COD) can be used as a nonlinear fracture mechanics parameter for

elastic-plastic materials. It is assumed that the displacement

profile of the crack is related to the state of deformation in the
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vicinity of the crack tip, yet independent of the particular specimen

geometry. The advantage of this technique is obvious to the experimen-

talist. The crack opening displacement is relatively easy to

measure and does not require the sophisticated instrumentation

necessary when trying to obtain near field stresses and strains.

The crack opening profiles for the isotropic and B-Al (ef = 0,

900) edge cracked analyses are presented in Fig.5.29 . Three sets of

profiles are plotted; elastic loading, elastic plastic loading, and

complete unloading. For the elastic and elastic-plastic loading cases,

all of the profiles have approximately the same shape, with only small

deviations occurring a small distance from the tip. The unloading

profiles demonstrate a much stronger contrast in shape. The peak

value of displacement is different with respect to the crack opening.

This indicates that while the near tip displacement is approximately

proportional to crack opening during monotonic loading, the amount of

elastic-plastic near tip recovery is not.

It should be noted that the triangular fan which is centered

about the crack tip is experiencing a large amount of deformation due

to the discontinuity in geometry. It is likely that a single linear

displacement element is not adequate to represent this large gradient.

Therefore, the resulting displacement spike is not realistic, and any

errors in displacements near the tip will have an additive effect.

The consequences of these findings have not been fully developed.

It may turn out that these particular profiles can be related to a

crack closure phenomenon [29], as illustrated by the contrast of the

isotropic and B-Al (e a 00) profiles after unloading. It has been
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observed in the laboratory [12], that retardation effects in B-Al

(e = 00) edge cracked panels are minimal in comparison to isotropic

specimens of the same geometry. It could be proposed that the lack

of a "dipping" of the B-Al profile negates any contact with the

opposite face upon unloading which could produce the crack closure

effect. But, before any firm conclusions could be proposed, additional

research would be required.

Comparison to Experimental Results for a Continuous Fiber Reinforced

Metal Matrix Composite

An experimental study of the elastoplastic response of a

unidirectional Boron-Aluminum metal matrix composite edge cracked panel

was conducted by 0. Kenaga [123 and S. Rizzi [24). This particular

study involved testing both a transverse and oblique edge cracked

specimen, as illustrated in Fig. 5.30. Multiple strain gage recordings

were taken in the vicinity of the crack tip. The finite element

meshes used to analyze these test specimens are the same as for the

other fixed grip analyses, except the dimensions were scaled to those

of Fig. 5.30.

The tests were run by first cycling the load to produce a distinct

crack, then applying the strain gages. The specimens were cycled

again until the crack tip propagated to the vicinity of the first

strain gage. The strain gages were then zeroed and a monotonic

overload applied. The ANPLAST analyses incorporates monotonic loading

to the maximum stress.

The results for the gage nearest the crack tip along the plane

of the crack was presented in Fig. 5.31. In both cases the finite
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element results overestimate the amount of work-hardening measured. It

is apparent that the cyclic loading prior to the overload changed the

elastoplastic material properties of the B-Al. Obviously, some type

of damage has been induced into the B-Al microstructure by the cycling

of the load which softens the resulting plastic work-hardening.

The material properties used in ANPLAST to analyze these problems

were derived from monotonically loaded uniaxial specimens with no prior

load conditioning. If a more representative analysis were required,

then the appropriate elastic and plastic material parameters would

have to be obtained from similarly damaged test specimens. Another

possibility would be to represent the material properties as a function

of damage level and incorporate this in the material characterization.

Of course, further research would be necessary before this approach

can be judged feasible.
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"SECTION 6 STUDY OF LAMINATED ELASTOPLASTIC MATERIALS

INTRODUCTION

Thin sheets of material are often layered (or laminated) together to

obtain a Composite which exhibits superior performance. While elastic

analyses of laminated structures have been thoroughly studied, only

recently have elastic-plastic materials been considered [30,31]. The

purpose of this chapter is to extend the previous research on homogenous

anisotropic elastoplastic materials and combine it with the incremental

lamination theory. Then, utilizing the previously developed computa-

tional tools, the complex behavior of various laminated structures will

be explored.

In this section, the global behavior of a laminate consisting of

isotropic elastoplastic layers is first investigated utilizing the

LAMINATE program. A laminate composed of orthotroic layers is also

analyzed and comparisons drawn to the isotropic example. The ANPLAST

finite element program is used to analyze a laminated plate with a

circular hole, for both isotropic and orthotropic layer construction.

ELASTIC-PLASTIC LAMINATE BEHAVIOR: ISOTROPIC LAYERS

The global response of a laminate consisting of isotropic elastic-

plastic layers was studied. Uniaxial and multiaxial behavior was inves-

tigated using LAMINATE.
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Global Response Due to Uniaxial Loading and Unloading

The uniaxial response of a laminate consisting of two isotropic

elastic-plastic materialswas analyzed, and the results are illustrated in

Fig. 6.1. The elastoplastic material properties chosen resemble what

one might find for a typical steel and aluminum alloy. The work-

hardening behavior is assumed to be of the Ramberg-Osgood type. Though

the analysis requires only two distinct layers, at least 4 laminas

would be required for symmetric behavior.

The uniaxial response of the base materials was also included to

reinforce the concept that global laminate behavior is a superposition

of individual layer response. The first indication of this averaging

effect is the two distinct break points for the laminate. The laminate

first experiences yield at less than 40,000 psi. This behavior is due

to the mismatch in elastic material properties. Layer #1 being three

times stiffer than Layer #2, it carries a significantly greater pro-

portion of the remote laminate loading. Therefore, it approaches

yield at a much greater rate than does a specimen consisting of a

single layer. Unloading is also included to demonstrate that permanent

deformation is present after the initial yield. It is interesting to

note that after the initial yield, the slope of the stress-strain

response is nearly constant. This is due to the dominance of elastic

stiffness contribution of Layer #2.

At approximately 57000 psi, Layer #2 yields and the entire

laminate becomes elastic-plastic. The global stress-strain response

now becomes non-linear due to the contribution of each lamina's non-

linear work-hardening law. It is apparent that the laminate response
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Figure 6.1 Uniaial load-deformation response of an isotropic
laminate (Laminate #1).
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tends to average the response of the individual layers. The laminate

was unloaded again to demonstrate the resulting permanent deformation.

The effect of changing the layer material properties on

global laminate reponse was studied next. The elastic material

properties are unchanged from the previous example, only the uniaxial

yield stresses for each material was changed. Layer #1 is now assumed

to have a yield stress twice the value of Layer #2.

This change in materiali properties does not alter the general behavior

of the laminate, as illustrated in Fig. 6.2. It is apparent that the

elastoplastic stress-strain response of the base materials are more

disperse, yet the laminate tends to average the responses. The initial

yield still occurs in Layer #1 (steel alloy) due to the elastic

disparity, but is soon followed by yielding in Layer #2 (aluminum

alloy). Note that both laminate yield points occur completely between

the base material yields. The laminate yield points for the previous

example stradled the individual material yields, i.e.,one higher, one

lower.

The ratio of axial to transverse stresses within each layer is

presented in Fig. 6.3. The presence of a transverse stress in each

lamina is due to the mismatch of the contractural strain contribution

in each layer. During the elastic loading range, the -, smatch is

directly associated to the difference of the Poisson ratios. After

Layer #1 has yielded, this mismatch becomes even more pronounced due

to the contribution of the plastic Poisson ratio, which in this case

is .• When both layers have become elastic-plastic, the tendency

is for the transverse stress to become negligible as axial loading is

continued.
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Figure 6.2 Uniaxial load-deformation response of an isotropic
laminate (Laminate #2).
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Figure 6.3 Axial and transverse layer stress distribution during
uniaxial loading of an isotropic laminate.
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It is quite clear that the slope of the plots in Fig. 6.3 are

not constant, which indicates non-proportionality of the normal

stresses. It is interesting to note that this non-proportional stress

state occurs even though the remote laminate loading is monotonic

uniaxial. This non-proportionality does not present a problem since

the formulation of the plasticity flow rule is entirely incremental.

These results suggest that a deformation theory of plasticity would not

be adequate for elastic-plastic laminates.

The lamination of isotropic elastic-plastic layers appears to

produce a composite 4ith a unique response. The global behavior of

the laminate is a function of the elastic and post yield plasticity

parameters of the individual laminas. It has been demonstrated that

many different laminate behaviors can be characterized with knowledge

of the base layer material properties and use of the LAMINATE program.

Ideally, one could combine several materials and arrive at a composite

behavior which envelopes the best attributes of each base material.

Laminate Response Due to Cyclic Loading

The global response of a laminate under a uniaxial load cycled

between fixed load limits was investigated. Laminate #1 elastoplastic

properties were selected for the analysis. Fig. 6 .4 illustrates the

uniaxial laminate response when subjected to cyclic loading. After

both layers have yielded (A, B) and considerable work-hardening has

occurred, the laminate was unloaded (C) and cycled three times between

fixed limits which are equal in tension and compression.
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Figure 6.4 Stress-strain response of an isotropic laminate
cycled between fixed load limits.
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The unloading process from point C to D proceeds in an elastic

manner as is consistent with elastoplastic theory but yields at point

D, rather than continuing elastically until the lower load limit is

reached. This appears to be a contradiction of the isotropic hardening

"assumption which predicts self-similar expansion of the yield surface.

This behavior can be accounted for if one recalls that each

lamina is constrained by its own individual elastic-plastic yield

criterion and isotropic work-hardening relationships. The interelation

of these different elastoplastic materials through the lamination

assumptions results in this complex behavior.

During the second and third cycles, the hysteresis loop appears to

become narrower, and the corresponding tension and compression yield

points move closer to the fixed limits. If the cyclic

loading continues, it has been demonstrated that the hysteresis loop

eventually collapses to a straight line bounded by the fixed load

limits.

The degree of permanent deformation exhibited by the individual

layers cannot be discerned. The layer stresses are plotted against

net section strain in Fig. 6.5. It is clear that Layer #1 underwent

elastic-plastic work-hardening, while Layer #2, the aluminum alloy,

stayed entirely elastic. The explanation of this phenomenon lies in

the much greater alastic stiffness of Layer #1. As a result of the

first order laminate assumptions, stiff layers tend to stress to a

greater extent than more flexible layers. An interesting aspect of

this behavior is that the elastic-plastic response is dominated by

the relative magnitude of the elastic properties, and not just the

plasticity parameters.
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A Study of the Laminate Yield Surface

The results from the previous section infer that Laminate #1 does

not exhibit isotropic hardening. Rather, a form of kinematic

hardening [8] or a combination of isotropic and kinematic hardening

behavior seems apparent. Figure 6.6 depicts the translation and

expansion of the laminate yield surface during the cyclic loading

represented in Fig. 6.4. The yield surface is defined uy utilizing

the multiaxial capability of the LAMINATE program. The first plot

(0D) is for the initial yield surface IA), which 4s centered about

the origin. The next plot (& ) is a representation of the laminate

yield surface immediately after unloading (C). The translation of the

yield locus accounts for the different values of yield in tension and

compression (C, D). It is also clear that the yield surface is

expanding, signifying a combined isotropic-kinematic work-hardening.

The third yield locus (+) is representative of the laminate after

re-load (E). The yield surface has translated towards negative

aill with very little expansion. The last plot depicts the laminate

yield surface after many cycles, when the hysteresis loop has collapsed

to a line. It is apparent that the anisotropy of yield induced by the

initial load cycles eventually dissipates as the laminate continues to

work-harden.

A multiaxial loading path and subsequent work-. Yefing was

considered next. A set of yield surfaces at three consecutive levels

of load is illustrated in Fig. 6.7. The initial yield surface takes

the familiar form of an ellipsoid centered about the origin (0). The

yield surfaces at points (&) and (+) indicate both kinematic and
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Figure 6.6 Illustration of the yield surface for an isotropic
laminate during uniaxial cyclic loading between
fixed load limits.
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Figure 6.7 Illustration of the yield surface for an isotropic
laminate during a multiaxial non-proportional
loading path.
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isotropic hardening, which is consistent with the cyclic loading

results.

Though only isotropic hardening behavior is assumed for each

individual layer, the laminate demonstrates a more com'plex response.

In fact, depending on the particular make-up of a laminate, it is

likely that global load-deformation response cannot be described by

classical elastoplasticity theory. Fortunately, the researcher need

not bother with the laborious task of characterizing the laminate as a

homogenous material; rather, one need only have a knowledge of the

simpler lamina properties, and a properly formulated lamination theory.

Path Dependency Due to Multiaxial Loading

Two sets of complex loading paths involving multiaxial stresses

were studied. Figure 6.8 illustrates the normal and shear strain

dependence on load path selection. These plots draw a strong

similarity to the study conducted in Section 2 which concerned strain

dependence on load path for a homogenous elastic-plastic material

(Fig. 2.13). The same conclusions can be reached for the laminate as

for the homogenous material; stress-strain response is not unique for

complex loading paths.

ELASTIC-PLASTIC LAMINATE BEHAVIOR: ORTHOTROPIC LAYERS

Laminates consisting of orthotropic elastoplastic layers were

considered and comparisons made with isotropic laminate behavior. This

topic is of practical interest since many metal matrix composite

applications require lamination.

190



.~ (a11 , 022)

.22)

.IWO-

1 (.0- 22, '11)

-•o -. j& o.nm, .• "1o .).•

(012, 022) (a22 G 12)

(022, 012)

.low t
a .lm- $

0".000 • OUO .!UO0 .iinO

e22

Figure 6.8 Deformation response of an isotropic laminate
due to different complex loading paths.

191



Global Response Due to Uniaxial Loading and Unloading

The uniaxial response of a laminate [O°/900]s consisting of two

orthotropic elastic-plastic materials (B-Al) is pictured in Fig. 6.9.

The laminate exhibits an initial linear behavior, then becomes non-

linear after the 900 ply yields. Though the 00 ply eventually yields

its stiffness contribution remains essentially elastic due to the

fiber-load alignment. Note how the laminate response again falls

between the homogenous layer material behavior.

The unloading behavior initially demonstrates the classical

elastic response, but at approximately 20,000 psi re-yields. It is

clear that the yield surface has been distorted during the tensile

work hardening, introducing some degree of additional anisotropy.

After the load is completely removed, a permanent net section laminate

strain is incurred, substantiating the idea that plastic deformation

is occurring in the various layers. This type of behavior has been

observed by Dvorak [30] and Sova [32).

The stresses in the laminas during laminate deformation are

illustrated in Fig. 6.10. Transverse stresses in the individual

layers are apparent as was the case with the isotropic laminate. The

contractural mismatch is due to the orthotropic nature of each layer,

and the particular lay-up design [00/9001s. The ratio of the principal

stress components denoted by the slopes of each plot is obviously not

constant. This again reinforces the non-proportionality of the stress

state.

The induction of transverse stress into the laminas during

laminate deformation has an effect on subsequent yield. For example,
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the 00 ply has the larger axial stress, but, due to the anisotropy of

the yield criterion, this stress component does not significantly

contribute to yielding. Conversely, the transverse stress present in

this ply does contribute.

Laminate Response Due to Cyclic Loading

The global response of this same laminate subjected to a uniaxial

load cycled between fixed load limits was studied. The B-Al results

are illustrated in Fig. 6.11. After initial yield, the laminate

work-hardened until unloading at point B. The load was removed and the

laminate underwent an equal amount of compression. The laminate was

then reloaded until the upper limit was reached. The process was

repeated for another two cycles.

The results are very similar to those for the isotropic laminate.

Unloading initially occurs elastically, but reverse yielding occurs

before the bottom load limit is reached, again indicating that non-

isotropic hardening occurs. The hysteresis loops for the Boron-

Aluminum laminate are initially narrower and collapse to a line faster

than for the isotropic laminate. This behavior is associated with the

greater ductility demonstrated by the isotropic materials. Due to the

fiber orientation of the 00 ply, plastic deformation is retarded.

The stress-strain behavior in the individual laminas are plotted

in Fig. 6.12. The 900 ply, which yields first, experiences considerable

plastic deformation as suggested by the large hysteresis loops. The

0' ply demonstrates almost purely elastic behavior throuqhout. This

behavior is consistent with the view that very little permanent

deformation can occur parallel to the stiff fibers.
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It is interesting to note that while the isotropic laminate

behavior was dominated by the ratio of the elastic stiffnesses, the

Boron-Aluminum laminate is not strongly dependent on elastic properties.

Instead, the Boron-Aluminum is dominated by the anisotropy of yield,

and the corresponding orientation of the individual laminas.

A Study of the Laminate Yield Surface

The laminate unloading and cyclic loading behavior demonstrates

that the work-hardening is not isotropic. Figure 6.13 depicts four

yield surfaces at various load points from the cyclic loading example

in Fig. 6.11.

The initial yield locus ((9) in Fig. 6.13 is almost square in

shape. This is quite different than that depicted for the isotropic

laminate. This contrasting behavior is due to the fibers being

aligned with each principal axis. This results in biaxial stresses

having a negligible effect on the laminate yield surface. Only the

stress within each layer that is transverse to the fibers contributes

to the yield. The yield surface reported by Dvorak [30] takes a

similar form.

The second plot (A ) represents the laminate yield surface after

tensile work-hardening to load point B. The yield surface has both

translated in an approximate rigid body sense, and experienced

distortion. The third locus (÷+) represents the yield surface at the

bottom of the first load cycle (D) and has also undergone a translation

and further distortion. Finally, at the end of the third loading

cycle, the yield locus (X) extends from the maximum to the minimum

load limit.
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It is obvious that B-Al laminate work-hardening is highly

anisotropic. The anisotropy of the work-hardening is not only induced

by the rigid body translation, but the distortion of the yield locus

as well. Note that the yield surface tends to distort in the direction

of the applied load, but expands a relatively small amount in the

transverse direction. It is likely that this type of deformation is

due to the relatively stiff behavior of the fibers in resisting

transverse plastic deformation.

The yield and work-hardening behavior studied in this section

provides justification for not analyzing the laminate on the

macroscopic scale. The theoretical mechanics necessary to describe

this unusual yield surface and subsequent work-hardening would be much

too cumbersome. Understanding the elastic-plastic behavior at the

"mini-level" and superimposing the responses via a lamination theory,

appears to offer the straightforward approach.

Path Dependency Due to Multiaxial Loading

Load path dependency of strain was investigated to demonstrate

the non-unique stress-stain response. Two complex loading paths

involving sequenced multiaxial loads wee applied to the B-Al laminate.

Figure 6.14 illustrates the normal and shear strain dependence on the

particular load path. These load paths are similar to those for the

isotropic laminate, in that there is a wide disparity in the final

deformation state.

The similarity of the isotropic homogenous, isotropic laminate,

and anisotropic B-Al laminate response confirms that the non-

proportionality of the stresses has a dominant effect on the final
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deformation state, regardless of anisotropy or material construction.

ANALYSIS OF A LAMINATED SHEET WITH A CIRCULAR HOLE: ISOTROPIC LAYERS

The ANPLAST finite element program wasused to analyze a laminated

sheet with a circular hole. The laminated shee.. is constructed of two

isotropic layers, as characterized in Fig. 6.1. The geometry and

loading of the finite specimen is illustrated in Fig. 4.1.

A Study of Plastic Zone Growth Within Each Layer

Growth of the plastic zone within each layer is illustrated in

Fig. 6.15. As expected, yielding is initiated in Layer #1 (Steel

Alloy) due to its much greater elastic stiffness. The initial yield

is located at the perimeter of the hole, along the symmetry line,

where the hoop stress (a yy) is a maximum. Yield is initiated in Layer

#2 (Aluminum Alloy) at a greater remote load.

The shape and growth of the plastic zone within each layer

parallels the behavior of a homogenous isotropic material, as was

analyzed in Section 4. It is apparent that the two layers interact

in such a way that the character of the plasticity is a function of

the individual layer properties, but the magnitude of plastic zone

growth is a superposition of the two responses. On the element level

total strain within each layer is the same, yet different levels of

plastic zone growth are found. This indicates that the elastic (ee)

and plastic (eJ) components of strain can be different for each layer,

but their sum must be the same.

A more quantitative presentation of plastic zone growth is

obtained by plotting contours of effective stress as shown in Fig.
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Figure 6.15 Plastic zone growth in each layer of an
isotropic laminated sheet subjected to
elastic-plastic loading.
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6.16. These contours reiterate the different states of plastic

deformation in each layer.

A Study of Residual Stresses and StrainS Due to Unloading

The specimen was first unloaded by taking a small negative loading

step, which allowed the elements to become elastic. The small unloading

increment also provided an opportunity for re-assembly of the stiffness

matrix. The load was removed in ten equal increments. In this

particular case, both layers and all elements became elastic during the

unloading, and did not re-yield.

The residual stress (a yy) distributions are illustrated in Fig.

6.17. Layer#1 exhibits the expected compressive residual stress component,

while the magnitude of stress in Layer #2 is considerably less. The

reason for this behavior involves the greater degree of permanent

deformation experienced by Layer #1. In addition, since Layer #1 is

stiffer, it will unload faster for an equal increment of laminate

strain. It is interesting to hypothesize that while the compressive

residual stress in Layer #1 may be sufficient to retard crack

initiation due to an overload this may not be the case for Layer #2.

ANALYSIS OF A LAMINATED SHEET WITH A CIRCULAR HOLE: ORTHOTROPIC LAYERS

An analysis of the laminated sheet with a circular hole

subjected to uniaxial remote loading was conducted with ANPLAST. The

laminated sheet consisted of two layers of B-Al [00/900]s

A Study of Plastic Zone Growth Within Each Layer

Growth of the plastic zone within each layer is illustrated in

Fig. 6.18. The initiation of permanent deformation occurs in the 900
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subjected to elastic unloading.
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Figure 6.18 Plastic zone growth in each ply for the B-Al
laminated sheet [0O/900]s with a circular
hole subjected to elastic-plastic loading.
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layer. Unlike the isotropic laminate results, the initiation of

yielding is not caused by the ratio of the layer elastic stiffness.

Rather, the very strong plastic anisotropy and ply orientation dominate.

The shape and growth of the plastic zones within each layer

parallels the response observed in the orthotropic homogenous problem.

The plastic zone in the go0 ply tends to grow across the width of the

specimen, while the zone in the 00 ply extends in a more vertical

pattern. Note that net section yielding is prevalent in the 900 ply at

a remote load of 34000 psi, while at the same time the plastic zone in

the 00 ply remains constrained to the vicinity of the hole. Though

the plastic zones in each layer take their characteristic shape

observed in Section 4, the rate of progression within each layer is

controlled by the superposition of the two responses.

The contour of effective stress in Fig. 6.19 clearly demonstrates

the much greater magnitude of plastic deformation present in the 900

ply. For the elastic loading increment, the contour of the 00 ply

indicates that the initiation of yield did not occur at the symmetry

line, but along the hole boundary at approximately e = 100. This is

consistent with the behavior observed in the analysis of the

homogenous orthotropic material.

Dvorak [33] has also analyzed a laminated plate [00/900] with a

circular hole for a FP-aluminum metal matrix composite. The plastic

zone visualization for this analysis is illustrated in Fig. 6.20. Note

the similarity of plastic zone shape, especially at the lower load.

It is interesting to note that Dvorak models the composite as a

micromechanical structure, in contrast to the simpler macroscopic

approach taken in this research.
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Figure 6.20 Plastic zone growth calculated by Dvorak [33] for
an orthotropic FP-Al laminated sheet [00/900] with
a circular hole subjected to elastic-plastic
loading.
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A Study of Residual Stresses and Strains Due to Unloading

The B-Al laminate wasunloaded in the same fashion as the isotropic

laminate, a small unloading step followed by ten equal unloading

increments. After the first unloading step, both layers became

elastic and remained elastic until the end of the last loading

increment when 4 elements, in proximity to the hole boundary,

re-yielded.

The residual stress (a yy) distributions are illustrated in Fig.

6.21. The typical compressive residual stress exists in the 900 ply,

but a residual tensile stress is present in the 00 ply. Since axx is

also tensile in the 00 ply, these results suggest that crack initiation

due to cyclic loading may be prevalent in this ply.

Experience and intuition are not sufficient in analyzing these

complex elastic-plastic laminates. As the geometries and loadings

become even more complex, the need for a practical computational tool,

such as ANPLAST, becomes obvious.

2
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Figure 6.21 ANPLAST residual stresses in each ply for
the B-Al laminated sheet with a circular
hole subjected to elastic unloading.
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SECTION 7

CONCLUSIONS

The purpose of this research was to develop a numerical tool to

investigate the role of anisotropy in the elastic-plastic behavior

of structural components.

The plane stress incremental orthotropic plasticity relations for

macroscopic deformation of thin sheets have been properly formulated. The

plasticity coefficients (r 1 1 , r 12 , r 6 6 ), effective yield stress (;y

and particular work-hardening law (0P vs ;) control the shape and

growth of the yield surface as well as the associated plastic flow.

The incremental formulation provides the necessary flexibility to

analyze nonproportional loading, including unloading.

The orthotropic plasticity flow rulewas formulated so that it

is compatible with the finite element method and directly implemented

into the program ANPLAST. Both the constabit strain triangle and

isoparametric quadralateral elements provide satisfactory results.

The non-linear problem is solved in an incremental manner which allows

complete non-proportionality of loading. The pre-processing and

post-processing software provides an efficient compliment to the

overall ANPLAST analysis capabilities.

The analysis of the sheet with a circular hole provides a bench-

mark for the elastic and isotropic elastic-plastic capabilities of

ANPLAST. The isotropic and orthotropic elastic capability of ANPLAST

demonstrates excellent agreement with the theoretical solution. The
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isotropic elastoplastic performance of ANPLAST compares well with

available theoretical and experimental solutions. Close concordance

with the experimental results of Rizzi [24] for a strongly anisotropic

B-Al metal-matrix composite verifies the adequacy of the anisotropic

formulation and demonstrates the practicality of applying ANPLAST.

The elastic analysis of the cracked panel illustrates the conven-

ience of utilizing an energy method for stress intensity calibration

of an anisotropic material. An elastoplastic analysis reveals that

plastic flow in the vicinity of the crack is strongly influenced by

the amount of anisotropy and the orientation of the principal material

direction. This suggests that the mechanisms which control crack

propagation are firmly linked to material directionality and the

resulting plasticity.

A number of strong similarities exist between the elastoplastic

results forthe hole and crack. The progression of the plastic zone

and related plastic flow is controlled by the same parameters. In

both cases a strong compressive longitudinal residual stress is evident

at the perimeter of each discontinuity, regardless of the degree of

anisotropy.

The response of elastoplastic laminated materials exhibits

extremely complex behavior. The study of both isotropic and orthotro-

pic layers leads to the conclusion that global laminate response is a

non-linear superposition of individual elastic and elastic-plastic

lamina properties. A laminate consisting of orthotropic layers

exhibits an initial yield surface which is quite different from that

of each lamina. Loading of either laminate construction beyond its
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initial yield results in a translation and distortion of the yield

surface. When the laminate is loaded between fixed load limits, the

yield surface eventually stabilizes after a number of load cycles.

It is clear that it is difficult to apply classical elastoplasticity

theory to the global deformation of laminates. But it is shown that

the most straightforward approach to the solution of these problems is

the characterization of elastic-plastic behavior at the mini-level

and superposition of the lamina responses via a legitimate lamination

theory.

The analysis of the laminated sheet with a circular hole exempli-

fies the usefulness of the implementation of the incremental lamination

theory into ANPLAST. The results demonstrate the significantly

different plastic deformation occurring within each layer.

Anisotropy can have a very complex influence on the elastoplastic

response of structures. But with aid of a numerical tool such as

ANPLAST they can be made tractable and their interesting aspects

conveniently elucidated.
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